Skip to main content

High Resolution E-Jet Printed Temperature Sensor on Artificial Skin

  • Conference paper
  • First Online:
EMBEC & NBC 2017 (EMBEC 2017, NBC 2017)

Abstract

Skin-conformable electronics research field has grown rapidly during the recent years. Body monitoring systems are shrinking in size and integrating more seamlessly with the human skin. To make these monitoring systems feasible options, new suitable materials and manufacturing processes needs to be studied. This paper presents materials and a simple fabrication process for skin-conformable, E-jet printed silver temperature sensors. Utilizing printing processes and biodegradable substrate materials, the skin-conformable electronics may become attractive for disposable systems by decreasing the manufacturing costs and reducing the amount of waste materials. In this study, the temperature sensors are fabricated with E-jet printed silver nanoparticle ink and the printing is done on a bacterial nanocellulose substrate. During the characterization, the silver temperature sensors were able to reach more than 0.06 % resistance change per degree Celsius sensitivity and they exhibited positive temperature dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Vuorinen T, Vehkaoja A, Jeyhani V, et al (2016) Printed, skinmounted hybrid system for ECG measurements. 2016 6th Electron Syst Technol Conf 1–6. doi: 10.1109/ESTC.2016.7764710

    Google Scholar 

  • 2. Khan Y, Garg M, Gui Q, et al (2016) Flexible Hybrid Electronics: Direct Interfacing of Soft and Hard Electronics for Wearable Health Monitoring. Adv Funct Mater 26:8764–8775. doi: 10.1002/adfm.201603763

    Google Scholar 

  • 3. Farooqui MF, Shamim A (2016) Inkjet printed wireless smart bandage. 2016 IEEE Middle East Conf Antennas Propag 1–2. doi: 10.1109/MECAP.2016.7790102

    Google Scholar 

  • 4. Hong SY, Lee YH, Park H, et al (2016) Stretchable Active Matrix Temperature Sensor Array of Polyaniline Nanofibers for Electronic Skin. Adv Mater 28:930–5. doi: 10.1002/adma.201504659

    Google Scholar 

  • 5. Bali C, Brandlmaier A, Ganster A, et al (2016) Fully Inkjet-Printed Flexible Temperature Sensors Based on Carbon and PEDOT:PSS1. Mater Today Proc 3:739–745. doi: 10.1016/j.matpr.2016.02.005

    Google Scholar 

  • 6. Vuorinen T, Niittynen J, Kankkunen T, et al (2016) Inkjet-printed graphene/PEDOT:PSS temperature sensors on a skin-conformable polyurethane substrate. Sci Rep. doi: 10.1038/srep35289

    Google Scholar 

  • 7. Jozala AF, de Lencastre-Novaes LC, Lopes AM, et al (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100:2063–2072. doi: 10.1007/s00253-015-7243-4

    Google Scholar 

  • 8. Lee K-Y, Buldum G, Mantalaris A, Bismarck A (2014) More Than Meets the Eye in Bacterial Cellulose: Biosynthesis, Bioprocessing, and Applications in Advanced Fiber Composites. Macromol Biosci 14:10–32. doi: 10.1002/mabi.201300298

    Google Scholar 

  • 9. Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129. doi: 10.1099/00221287-11-1-123

    Google Scholar 

  • 10. Hungund BS, Gupta SG (2010) Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple. World J Microbiol Biotechnol 26:1823–1828. doi: 10.1007/s11274-010-0363-1

    Google Scholar 

  • 11. Tanskul S, Amornthatree K, Jaturonlak N (2013) A new celluloseproducing bacterium, Rhodococcus sp. MI 2: Screening and optimization of culture conditions. Carbohydr Polym 92:421–428. doi: 10.1016/j.carbpol.2012.09.017

    Google Scholar 

  • 12. Laurila MM, Khorramdel B, Mäntysalo M (2017) Combination of E-Jet and Inkjet Printing for Additive Fabrication of Multilayer High-Density RDL of Silicon Interposer. IEEE Trans Electron Devices 64:1217–1224. doi: 10.1109/TED.2016.2644728

    Google Scholar 

  • 13. Hutchings IM, Martin GD (2012) Introduction to Inkjet Printing for Manufacturing. In: Inkjet Technol. Digit. Fabr. John Wiley & Sons, Ltd, pp 1–20

    Google Scholar 

  • 14. Murata K, Masuda K (2011) Super Inkjet Printer Technology and Its Properties. Convert e-Print 108–111.

    Google Scholar 

  • 15. Advanced Nano Products Ltd. ANP Silverjet datasheet at:http://anapro.com/eng/product/silver_inkjet_ink.html.

    Google Scholar 

  • 16. Wei C, Qin H, Ramírez-Iglesias NA, et al (2014) High-resolution ac-pulse modulated electrohydrodynamic jet printing on highly insulating substrates. J Micromech Microeng 24:45010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiina Vuorinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Vuorinen, T., Laurila, MM., Mangayil, R., Karp, M., Mäntysalo, M. (2018). High Resolution E-Jet Printed Temperature Sensor on Artificial Skin. In: Eskola, H., Väisänen, O., Viik, J., Hyttinen, J. (eds) EMBEC & NBC 2017. EMBEC NBC 2017 2017. IFMBE Proceedings, vol 65. Springer, Singapore. https://doi.org/10.1007/978-981-10-5122-7_210

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5122-7_210

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5121-0

  • Online ISBN: 978-981-10-5122-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics