Skip to main content

Network Science in Logistics: A New Way to Flexible Adaptation

  • Chapter
  • First Online:
Flexibility in Resource Management

Part of the book series: Flexible Systems Management ((FLEXSYS))

  • 917 Accesses

Abstract

In this chapter, we determine the cause and effect relationship between the networked structure of an organization (the network element of the supply chain network) and its behaviours. The strong analogies, we have earlier established, between the supply chain network and the three-billion-year-old biochemical networks (metabolic networks and protein–protein interaction networks) can explain a number of behaviours that are well known, also in supply chain networks. The determined network structures, patterns and the clarification in synchronicity and asynchrony in the network of an organization enable us to: create adaptive flexibility in our organization, better define the right solutions against external perturbations avoiding the cascading failures in our organization and beyond, and increase its resilience against network perturbations (supply chain disruptions).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Antal, M., Böde, C., & Csermely, P. (2009). Perturbation waves in proteins and protein networks: Application of percolation and game theories in signaling and drug design. Current Protein and Peptide Science, 10(2), 161–172.

    Article  Google Scholar 

  • Barabási, A.-L. (2002). Linked: The new science of networks. Cambridge, MA: Perseus Publishing.

    Google Scholar 

  • Bianconi, G., Gulbahce, N., & Motter, A. E. (2008). Local structure of directed networks. The American Physical Society. http://www3.nd.edu/~networks/Publication%20Categories/03%20Journal%20Articles/Complex%20Networks/200803-21_PhysRevLtrs-DirectedNetworks.pdf

  • Chen, Y.-H., Wang, B.-H., Zhao, L.-C., Zhou, C., & Zhou, T. (2009). Optimal transport on supply-demand networks. http://image.sciencenet.cn/olddata/kexue.com.cn/upload/blog/file/2009/8/200989214547780698.pdf

  • Csermely, P. (2008). Creative elements: Network-based predictions of active centres in proteins and cellular and social networks. Trends in Biochemical Sciences, 33(12), 569–576.

    Article  Google Scholar 

  • Csermely, P. (2009). Weak links. The universal key to the stability of networks and complex systems. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Fekete, I. (1992). A Rendszerelméleten Alapuló Komplex Földtani Térképezés. Geodézia és kartográfia, 44. évfolyam 4. szám, 270–276.

    Google Scholar 

  • Fekete, I. (2003). Systematisation modeling of communication. In H. H. Diebner & L. Ramsay (Eds.), Hierarchies of communication (pp. 159–170). Karlsruhe: Verlag ZKM.

    Google Scholar 

  • Fekete, I., & Hartványi, T. (2013). Value chain stabilization with combined quantity-irregularity graphs. In T. Baltacioglu et al. (Eds.), Value chain sustainability through innovation and design (pp. 189–199). Izmir: Izmir University of Economics Publication.

    Google Scholar 

  • Fekete, I., & Hartványi, T. (2014). Further analogies between biochemical networks and demand-supply networks. Spring Wind 2014 (pp. 53–63). Association of Hungarian Ph.D. and DLA Students, Debrecen

    Google Scholar 

  • Ghoshal, G., & Barabási, A.-L. (2011). Ranking stability and super-stable nodes in complex networks. Nature Communications. http://www.nature.com/articles/ncomms1396

  • Kazemian, I., & Aref, S. (2016). Multi-echelon supply chain flexibility enhancement through detecting bottlenecks. Global Journal of Flexible Systems Management, 17(4), 357–372.

    Article  Google Scholar 

  • Kim, W. C., & Mauborgne, R. (2005). Blue ocean strategy. Boston, MA: Harward Business School Press.

    Google Scholar 

  • Newmann, M. E. J. (2010). Networks. Oxford: Oxford University Press Inc.

    Book  Google Scholar 

  • Palotai, R., & Csermely, P. (2009). Network modules help the identification of key transport routes, signaling pathways in cellular and other networks. Annalen der Physik, 18, 822–829.

    Article  Google Scholar 

  • Smith, J. M., & Szathmáry, E. (1999). The origins of life. Oxford: Oxford University Press.

    Google Scholar 

  • Snyder, L. V., & Shen, Z.-J. M. (2011). Fundamentals of supply chain theory. Hoboken, NJ: Wiley.

    Google Scholar 

  • Strogatz, S. (2003). Sync: How order emerges from chaos in the universe, nature and daily life. New York: Hyperion Books.

    Google Scholar 

  • Supply Chain Council. (2011). Supply chain operations reference (SCOR) model, overviewVersion 10.0. http://www.portaldeconhecimentos.org.br/index.php/por/content/download/24758/296095/file/Supply%20Chain%20Operations%20Reference%20(SCOR)%20model.pdf

  • Vitasek, K. L., Manrodt, K. B., & Kelly, M. (2003). Solving the supply-demand mismatch. Supply Chain Management Review, 58–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartványi Tamás .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

István, F., Tamás, H. (2018). Network Science in Logistics: A New Way to Flexible Adaptation. In: Sushil, Singh, T., Kulkarni, A. (eds) Flexibility in Resource Management. Flexible Systems Management. Springer, Singapore. https://doi.org/10.1007/978-981-10-4888-3_4

Download citation

Publish with us

Policies and ethics