Skip to main content

Transmembrane Receptor Dynamics as Biophysical Markers for Assessing Cancer Cells

  • Living reference work entry
  • First Online:
Handbook of Single Cell Technologies
  • 76 Accesses

Abstract

As biophysical properties of tissues and cells play essential roles in cellular function, morphogenesis, and disease progression, numerous conventional techniques have been developed to characterize cells and differentiate benign cells from cancer cells. Recently, Transmembrane Receptor Dynamics, a single-particle tracking based biophysical phenotyping assay, was developed as a contact-free technique that can probe the topography of the plasma membrane and nanostructure of the membrane-associated cytoskeleton with sub-diffraction-limited resolution. Here, we review this state-of-the-art technology by narrating the underlying biophysical principles of single-particle tracking and discussing the interpretation of the dynamics of tyrosine kinase receptors. We further elaborate its potential for gaining insights into biology and being translated as a cancer diagnostic tool on the basis of machine learning models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agoulnik IU et al (2005) Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression. Cancer Res 65:7959–7967

    Article  Google Scholar 

  • Andrews NL et al (2008) Actin restricts Fc&RI diffusion and facilitates antigen-induced receptor immobilization. Nat Cell Biol 10:955–963

    Article  Google Scholar 

  • Arhel N et al (2006) Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nat Methods 3:817

    Article  Google Scholar 

  • Arndt-Jovin DJ et al (2006) In vivo cell imaging with semiconductor quantum dots and noble metal nanodots. In: Colloidal quantum dots for biomedical applications. International Society for Optics and Photonics

    Google Scholar 

  • Bag N, Huang SR, Wohland T (2015) Plasma membrane organization of epidermal growth factor receptor in resting and ligand-bound states. Biophys J 109:1925–1936

    Article  Google Scholar 

  • Baker EL, Srivastava J, Yu D, Bonnecaze RT, Zaman MH (2011) Cancer cell migration: integrated roles of matrix mechanics and transforming potential. PLoS One 6:e20355

    Article  Google Scholar 

  • Bao G, Suresh S (2003) Cell and molecular mechanics of biological materials. Nat Mater 2:715

    Article  Google Scholar 

  • Barriga EH, Franze K, Charras G, Mayor R (2018) Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 554:523

    Article  Google Scholar 

  • Bates IR et al (2006) Membrane lateral diffusion and capture of CFTR within transient confinement zones. Biophys J 91:1046–1058

    Article  Google Scholar 

  • Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365

    Article  Google Scholar 

  • Bongiorno T, Chojnowski JL, Lauderdale JD, Sulchek T (2016) Cellular stiffness as a novel stemness marker in the corneal limbus. Biophys J 111:1761–1772

    Article  Google Scholar 

  • Bovellan M et al (2014) Cellular control of cortical actin nucleation. Curr Biol 24:1628–1635

    Article  Google Scholar 

  • Cai E et al (2014) Stable small quantum dots for synaptic receptor tracking on live neurons. Angew Chem Int Edit 53:12484–12488

    Google Scholar 

  • Calzado-Martín A, Encinar M, Tamayo J, Calleja M, San PA (2016) Effect of actin organization on the stiffness of living breast cancer cells revealed by peak-force modulation atomic force microscopy. ACS Nano 10:3365–3374

    Article  Google Scholar 

  • Casaletto JB, McClatchey AI (2012) Spatial regulation of receptor tyrosine kinases in development and cancer. Nat Rev Cancer 12:387–400

    Article  Google Scholar 

  • Chamma I et al (2016) Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin. Nat Commun 7

    Google Scholar 

  • Chen HF, Titushkin I, Stroscio M, Cho M (2007) Altered membrane dynamics of quantum dot-conjugated integrins during osteogenic differentiation of human bone marrow derived progenitor cells. Biophys J 92:1399–1408

    Article  Google Scholar 

  • Chen CL et al (2013) Single-cell analysis of circulating tumor cells identifies cumulative expression patterns of EMT-related genes in metastatic prostate cancer. Prostate 73:813–826

    Article  Google Scholar 

  • Chen Z et al (2018) EGFR family and Src family kinase interactions: mechanics matters? Curr Opin Cell Biol 51:97–102

    Article  Google Scholar 

  • Chung I, Akita R, Vandlen R, Toomre D, Schlessinger J, Mellman I (2010) Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464:783–787

    Article  Google Scholar 

  • Cireşan D, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. arXiv preprint arXiv:12022745

    Google Scholar 

  • Clausen MP, Lagerholm BC (2011) The probe rules in single particle tracking. Curr Protein Pept Sci 12:699–713

    Article  Google Scholar 

  • Clausen MP, Lagerholm BC (2013) Visualization of plasma membrane compartmentalization by high-speed quantum dot tracking. Nano Lett 13:2332–2337

    Article  Google Scholar 

  • Coudray N et al (2018) Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med 24:1559–1567

    Article  Google Scholar 

  • Couture HD et al (2018) Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype. NPJ Breast Cancer 4

    Google Scholar 

  • Creighton CJ et al (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci 106:13820–13825

    Article  Google Scholar 

  • Cross SE, Jin Y-S, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783

    Article  Google Scholar 

  • Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445

    Article  Google Scholar 

  • Dao M, Lim CT, Suresh S (2003) Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solid 51:2259–2280

    Article  Google Scholar 

  • Darling EM, Di Carlo D (2015) High-throughput assessment of cellular mechanical properties. Annu Rev Biomed Eng 17:35–62

    Article  Google Scholar 

  • Daumas F, Destainville N, Millot C, Lopez A, Dean D, Salome L (2003) Confined diffusion without fences of a G-protein-coupled receptor as revealed by single particle tracking. Biophys J 84:356–366

    Article  Google Scholar 

  • Di Rienzo C, Gratton E, Beltram F, Cardarelli F (2013) Fast spatiotemporal correlation spectroscopy to determine protein lateral diffusion laws in live cell membranes. Proc Natl Acad Sci 110:12307–12312

    Article  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  Google Scholar 

  • Farlow J, Seo D, Broaders KE, Taylor MJ, Gartner ZJ, Jun Y-W (2013) Formation of targeted monovalent quantum dots by steric exclusion. Nat Methods 10:1203–1205

    Article  Google Scholar 

  • Freeman SA et al (2015) Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor. Nat Commun 6:6168

    Article  Google Scholar 

  • Freeman SA et al (2018) Transmembrane pickets connect cyto- and pericellular skeletons forming barriers to receptor engagement. Cell 172:305

    Article  Google Scholar 

  • Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157:1071–1082

    Article  Google Scholar 

  • Gelles J, Schnapp BJ, Sheetz MP (1988) Tracking kinesin-driven movements with nanometre-scale precision. Nature 331:450

    Article  Google Scholar 

  • Godinez WJ, Hossain I, Lazic SE, Davies JW, Zhang X (2017) A multi-scale convolutional neural network for phenotyping high-content cellular images. Bioinformatics 33:2010–2019

    Article  Google Scholar 

  • Gossett DR et al (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci 109:7630–7635

    Article  Google Scholar 

  • Groc L et al (2004) Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat Neurosci 7:695–696

    Article  Google Scholar 

  • Guck J et al (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88:3689–3698

    Article  Google Scholar 

  • Guo M et al (2014) Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 158:822–832

    Article  Google Scholar 

  • Haggie PM, Kim JK, Lukacs GL, Verkman A (2006) Tracking of quantum dot-labeled CFTR shows near immobilization by C-terminal PDZ interactions. Mol Biol Cell 17:4937–4945

    Article  Google Scholar 

  • Hahn C, Schwartz MA (2009) Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol 10:53

    Article  Google Scholar 

  • He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition

    Google Scholar 

  • Heisenberg C-P, Bellaïche Y (2013) Forces in tissue morphogenesis and patterning. Cell 153:948–962

    Article  Google Scholar 

  • Hennessy BT et al (2009) Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69:4116–4124

    Article  Google Scholar 

  • Hielscher A, Wirtz D (2013) A physical sciences network characterization of non-tumorigenic and metastatic cells. Sci Rep 3

    Google Scholar 

  • Hochmuth RM (2000) Micropipette aspiration of living cells. J Biomech 33:15–22

    Article  Google Scholar 

  • Hofling F, Franosch T (2013) Anomalous transport in the crowded world of biological cells. Rep Prog Phys 76:046602

    Article  MathSciNet  Google Scholar 

  • Hou HW, Li Q, Lee G, Kumar A, Ong C, Lim CT (2009) Deformability study of breast cancer cells using microfluidics. Biomed Microdevices 11:557–564

    Article  Google Scholar 

  • Howarth M et al (2006) A monovalent streptavidin with a single femtomolar biotin binding site. Nat Methods 3:267–273

    Article  Google Scholar 

  • Howarth M et al (2008) Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat Methods 5:397–399

    Article  Google Scholar 

  • Hutter F, Hoos H, Leyton-Brown K (2014) An efficient approach for assessing hyperparameter importance. In: International conference on machine learning

    Google Scholar 

  • Ibach J et al (2015) Single particle tracking reveals that EGFR signaling activity is amplified in clathrin-coated pits. PLoS One 10:e0143162

    Article  Google Scholar 

  • Jaqaman K, Grinstein S (2012) Regulation from within: the cytoskeleton in transmembrane signaling. Trends Cell Biol 22:515–526

    Article  Google Scholar 

  • Kao J et al (2009) Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One 4:e6146

    Article  Google Scholar 

  • Kasai RS, Kusumi A (2014) Single-molecule imaging revealed dynamic GPCR dimerization. Curr Opin Cell Biol 27:78–86

    Article  Google Scholar 

  • Katayama Y, Burkacky O, Meyer M, Bräuchle C, Gratton E, Lamb DC (2009) Real-time nanomicroscopy via three-dimensional single-particle tracking. ChemPhysChem 10:2458–2464

    Article  Google Scholar 

  • Kenny PA et al (2007) The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol 1:84–96

    Article  Google Scholar 

  • Kramer N et al (2013) In vitro cell migration and invasion assays. Rev Mutat Res 752:10–24

    Article  Google Scholar 

  • Kraus OZ, Ba JL, Frey BJ (2016) Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32:i52–i59

    Article  Google Scholar 

  • Krieg M et al (2019) Atomic force microscopy-based mechanobiology. Nat Rev Phys 1:41–57

    Article  Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. Morgan Kaufmann Publishers, San Mateo

    Google Scholar 

  • Kumar S, Weaver VM (2009) Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev 28:113–127

    Article  Google Scholar 

  • Kusumi A, Sako Y, Yamamoto M (1993) Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J 65:2021–2040

    Article  Google Scholar 

  • Kusumi A et al (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378

    Article  Google Scholar 

  • Kusumi A, Tsunoyama TA, Hirosawa KM, Kasai RS, Fujiwara TK (2014) Tracking single molecules at work in living cells. Nat Chem Biol 10:524–532

    Article  Google Scholar 

  • Lakadamyali M, Rust MJ, Babcock HP, Zhuang X (2003) Visualizing infection of individual influenza viruses. Proc Natl Acad Sci 100:9280–9285

    Article  Google Scholar 

  • Le V et al (2018) Syndecan-1 in mechanosensing of nanotopological cues in engineered materials. Biomaterials 155:13–24

    Article  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Article  Google Scholar 

  • Li Z et al (2009) Quantifying the traction force of a single cell by aligned silicon nanowire array. Nano Lett 9:3575–3580

    Article  Google Scholar 

  • Li C-W et al (2018) Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell 33:187–201. e110

    Article  Google Scholar 

  • Lim E et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15:907

    Article  Google Scholar 

  • Liu AP, Aguet F, Danuser G, Schmid SL (2010) Local clustering of transferrin receptors promotes clathrin-coated pit initiation. J Cell Biol 191:1381–1393

    Article  Google Scholar 

  • Liu C, Liu Y-L, Perillo EP, Jiang N, Dunn AK, Yeh H-C (2015) Improving z-tracking accuracy in the two-photon single-particle tracking microscope. Appl Phys Lett 107:153701

    Article  Google Scholar 

  • Liu Y-L et al (2016) Segmentation of 3D trajectories acquired by TSUNAMI microscope: an application to EGFR trafficking. Biophys J 111:2214–2227

    Article  Google Scholar 

  • Liu Y-L et al (2019a) Assessing metastatic potential of breast cancer cells based on EGFR dynamics. Sci Rep 9:3395

    Article  Google Scholar 

  • Liu Y-L et al (2019b) Spatial EGFR dynamics and metastatic phenotypes modulated by upregulated EphB2 and Src pathways in advanced prostate cancer. Cancer 11:1910

    Article  Google Scholar 

  • Low-Nam ST et al (2011) ErbB1 dimerization is promoted by domain co-confinement and stabilized by ligand binding. Nat Struct Mol Biol 18:1244–1249

    Article  Google Scholar 

  • Manzo C, Garcia-Parajo MF (2015) A review of progress in single particle tracking: from methods to biophysical insights. Rep Prog Phys 78:124601

    Article  Google Scholar 

  • Mason T, Ganesan K, Van Zanten J, Wirtz D, Kuo S (1997) Particle tracking microrheology of complex fluids. Phys Rev Lett 79:3282

    Article  Google Scholar 

  • McNiven MA (2013) Breaking away: matrix remodeling from the leading edge. Trends Cell Biol 23:16–21

    Article  Google Scholar 

  • Meilhac N, Le Guyader L, Salome L, Destainville N (2006) Detection of confinement and jumps in single-molecule membrane trajectories. Phys Rev E 73

    Google Scholar 

  • Mohammadi H, Sahai E (2018) Mechanisms and impact of altered tumour mechanics. Nat Cell Biol 20:766–774

    Article  Google Scholar 

  • Network TPS-OC (2013) A physical sciences network characterization of non-tumorigenic and metastatic cells. Sci Rep 3

    Google Scholar 

  • Neve RM et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527

    Article  Google Scholar 

  • Ng MR, Besser A, Danuser G, Brugge JS (2012) Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility. J Cell Biol 199:545–563

    Article  Google Scholar 

  • Osmulski P et al (2014) Nanomechanical biomarkers of single circulating tumor cells for detection of castration resistant prostate cancer. Prostate 74:1297–1307

    Article  Google Scholar 

  • Otto O et al (2015) Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat Methods 12:199

    Article  Google Scholar 

  • Park SI et al (2008) Targeting SRC family kinases inhibits growth and lymph node metastases of prostate cancer in an orthotopic nude mouse model. Cancer Res 68:3323–3333

    Article  Google Scholar 

  • Park HY et al (2014) Visualization of dynamics of single endogenous mRNA labeled in live mouse. Science 343:422–424

    Article  Google Scholar 

  • Paszek MJ et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    Article  Google Scholar 

  • Pavani SRP et al (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci 106:2995–2999

    Article  Google Scholar 

  • Pedregosa F et al (2011) Scikit-learn: Machine learning in Python. J Mach Learn Res 12:2825–2830

    MathSciNet  MATH  Google Scholar 

  • Perillo EP et al (2015) Deep and high-resolution three-dimensional tracking of single particles using nonlinear and multiplexed illumination. Nat Commun 6

    Google Scholar 

  • Petridou NI, Spiro Z, Heisenberg C-P (2017) Multiscale force sensing in development. Nat Cell Biol 19:581–588

    Article  Google Scholar 

  • Pinaud F, Michalet X, Iyer G, Margeat E, Moore HP, Weiss S (2009) Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking. Traffic 10:691–712

    Article  Google Scholar 

  • Prat A et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:R68

    Article  Google Scholar 

  • Pryor Meghan M, Low-Nam Shalini T, Halász Ádám M, Lidke Diane S, Wilson Bridget S, Edwards JS (2013) Dynamic transition states of ErbB1 phosphorylation predicted by spatial stochastic modeling. Biophys J 105:1533–1543

    Article  Google Scholar 

  • Puig-de-Morales-Marinkovic M, Turner KT, Butler JP, Fredberg JJ, Suresh S (2007) Viscoelasticity of the human red blood cell. Am J Phys Cell Phys 293:C597–C605

    Article  Google Scholar 

  • Qian H, Sheetz MP, Elson EL (1991) Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J 60:910–921

    Article  Google Scholar 

  • Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J 70:556–567

    Article  Google Scholar 

  • Ram S, Kim D, Ober RJ, Ward ES (2012) 3D single molecule tracking with multifocal plane microscopy reveals rapid intercellular transferrin transport at epithelial cell barriers. Biophys J 103:1594–1603

    Article  Google Scholar 

  • Remmerbach TW, Wottawah F, Dietrich J, Lincoln B, Wittekind C, Guck J (2009) Oral cancer diagnosis by mechanical phenotyping. Cancer Res 69:1728–1732

    Article  Google Scholar 

  • Ridley AJ (2011) Life at the leading edge. Cell 145:1012–1022

    Article  Google Scholar 

  • Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer

    Google Scholar 

  • Salaita K et al (2010) Restriction of receptor movement alters cellular response: physical force sensing by EphA2. Science 327:1380–1385

    Article  Google Scholar 

  • Sasai Y (2013) Cytosystems dynamics in self-organization of tissue architecture. Nature 493:318–326

    Article  Google Scholar 

  • Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2013) Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:13126229

    Google Scholar 

  • Serwane F et al (2017) In vivo quantification of spatially varying mechanical properties in developing tissues. Nat Methods 14:181

    Article  Google Scholar 

  • Shav-Tal Y et al (2004) Dynamics of single mRNPs in nuclei of living cells. Science 304:1797–1800

    Article  Google Scholar 

  • Shin D, Athanasiou K (1999) Cytoindentation for obtaining cell biomechanical properties. J Orthop Res 17:880–890

    Article  Google Scholar 

  • Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556

    Google Scholar 

  • Stachowiak JC et al (2012) Membrane bending by protein–protein crowding. Nat Cell Biol 14:944

    Article  Google Scholar 

  • Subik K et al (2010) The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer Basic Clin Res 4:35

    Article  Google Scholar 

  • Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Mater 55:3989–4014

    Article  Google Scholar 

  • Suzuki KG et al (2012) Transient GPI-anchored protein homodimers are units for raft organization and function. Nat Chem Biol 8:774–783

    Article  Google Scholar 

  • Swaminathan V, Mythreye K, O’Brien ET, Berchuck A, Blobe GC, Superfine R (2011) Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res 71:5075–5080

    Article  Google Scholar 

  • Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci 100:1484–1489

    Article  Google Scholar 

  • Taube JH et al (2010) Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci 107:15449–15454

    Article  Google Scholar 

  • Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142

    Article  Google Scholar 

  • Treanor B et al (2010) The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity 32:187–199

    Article  Google Scholar 

  • Van Helvert S, Storm C, Friedl P (2018) Mechanoreciprocity in cell migration. Nat Cell Biol 20:8

    Article  Google Scholar 

  • Van Rijn JN, Hutter F (2018) Hyperparameter importance across datasets. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining

    Google Scholar 

  • Wang N, Ingber DE (1995) Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochem Cell Biol 73:327–335

    Article  Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127

    Article  Google Scholar 

  • Wells NP et al (2010) Time-resolved three-dimensional molecular tracking in live cells. Nano Lett 10:4732–4737

    Article  Google Scholar 

  • Welsher K, Yang H (2014) Multi-resolution 3D visualization of the early stages of cellular uptake of peptide-coated nanoparticles. Nat Nanotechnol 9:198–203

    Article  Google Scholar 

  • Wirtz D (2009) Particle-tracking microrheology of living cells: principles and applications. Annu Rev Biophys 38:301–326

    Article  Google Scholar 

  • Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11:512–522

    Article  Google Scholar 

  • Wu P-H et al (2018) A comparison of methods to assess cell mechanical properties. Nat Methods 15:491–498

    Article  Google Scholar 

  • Ye F et al (2014) Semiconducting polymer dots with monofunctional groups. Chem Commun 50:5604–5607

    Article  Google Scholar 

  • Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065

    Article  Google Scholar 

  • Yilmaz M, Christofori G (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28:15–33

    Article  Google Scholar 

  • Yilmaz M, Christofori G (2010) Mechanisms of motility in metastasizing cells. Mol Cancer Res 8:629–642

    Article  Google Scholar 

  • Zhang H, Liu K-K (2008) Optical tweezers for single cells. J R Soc Interface 5:671–690

    Article  Google Scholar 

  • Zhang G, Long M, Wu Z-Z, Yu W-Q (2002) Mechanical properties of hepatocellular carcinoma cells. World J Gastroenterol 8:243

    Article  Google Scholar 

  • Zhang T et al (2014) Photoluminescence of a single complex plasmonic nanoparticle. Sci Rep 4:3867

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hsin-Chih Yeh for sharing his experience of SPT/SMT techniques. Soonwoo Hong for insightful discussions and feedback on the application of deep-learning in the trajectory analysis. This work was funded by the Ministry of Science and Technology, Taiwan (MOST 108-2636-E-039-001) and China Medical University, Taiwan (CMU108-YTY-01).

Author Contributions

M. Kim and Y.-L. Liu wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Liang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kim, M., Liu, YL. (2021). Transmembrane Receptor Dynamics as Biophysical Markers for Assessing Cancer Cells. In: Santra, T.S., Tseng, FG. (eds) Handbook of Single Cell Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-4857-9_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4857-9_38-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4857-9

  • Online ISBN: 978-981-10-4857-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics