Skip to main content

Sheep Genetic Diversity and Breed Differences for Climate-Change Adaptation

  • Chapter
  • First Online:
Sheep Production Adapting to Climate Change

Abstract

Numerous factors may affect the resilience and sustainability of global sheep production systems, and climate change will provide new challenges in this regard. In this chapter, the author addresses phenotypic and genetic variations associated with variable climatic conditions, particularly those associated with adaptation to biotic and abiotic stressors. The first section reviews aspects of phenotypic and genetic variations associated with tolerance characteristics, e.g., coat color, tail shape, and body temperature under extreme weather events. The second section examines genomic variation associated with tolerance to climate stress using different genomic approaches. In the final section, the basic information and strategies for the genetic improvement of sheep for climate-stress-tolerance traits, e.g., genetic parameters and genomic tools, are discussed. In all sections, research examples are provided of specific adaptations to certain stresses. The information provided in this chapter should extend the understanding of the genetic architecture of climate-driven adaptation and evolution, genomics, and selective breeding. It should also encourage the application of such results for supporting sheep breeding and production to cope with the stresses resulting from expected global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aboul-Naga A, Khalifa MHH, Elbeltagy AR et al (2010) Tolerance to abiotic stresses in Egyptian Barki desert sheep and goats raised under hot-dry conditions: individual variations. In: Proceedings of the 10th international conference on development of dry-lands; meeting the challenge of sustainable development in dry-lands under changing climate – moving from Global to Local, Cairo, Egypt, 12–15 December 2010, pp 554–459

    Google Scholar 

  • Amaral AJ, Ferretti L, Megens HJ et al (2011) Genome-wide footprints of pig domestication and selection revealed through massive parallel sequencing of pooled DNA. PLoS One 6(4):e14782. doi:10.1371/journal.pone.0014782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker RL (1998) A review of genetic resistance to gastrointestinal nematode parasites in sheep and goats in the tropics and evidence for resistance in some sheep and goat breeds in sub-humid coastal Kenya. Anim Genet Res Info Bull 24:13–30

    Article  Google Scholar 

  • Baker RL, Gray GD (2003) Appropriate breeds and breeding schemes for sheep and goats in the tropics. In: Sani RA, Gray GD, Baker RL (eds) Worm control for small ruminants in Tropical Asia, Monograph 113. Australian Centre for International Agricultural Research (ACIAR), Canberra, pp 63–95

    Google Scholar 

  • Bishop SC (2012) Possibilities to breed for resistance to nematode parasite infections in small ruminants in tropical production systems. Animals 6(5):741–747

    CAS  Google Scholar 

  • Bishop SC, Morris CA (2007) Genetics of disease resistance in sheep and goats. Small Rumin Res 70:48–59

    Article  Google Scholar 

  • Bishop SC, Stear MJ (2001) Inheritance of and factors affecting egg counts during early lactation in Scottish Blackface ewes facing mixed natural nematode infections. Anim Sci 73:389–395

    Article  Google Scholar 

  • Bishop SC, Jackson F, Coop RL et al (2004) Genetic parameters for resistance to nematode infections in Texel lambs and their utility in breeding programmes. Anim Sci 78:185–194

    Google Scholar 

  • Burrow HM (2006) Proceedings of the 8th WCGALP, Belo Horizonte, Minas Gerais, Brazil, 13–18 August 2006

    Google Scholar 

  • Burrow HM, Henshall JM (2014) Production relationships between adaptive and productive traits in cattle, goats and sheep in tropical environments. In: Proceedings of the 10th WCGALP, Vancouver, Canada, 17–22 August 2014

    Google Scholar 

  • Burrow HM, Moore SS, Johnston DJ et al (2001) Aust J Exp Agric 41:893–919

    Article  CAS  Google Scholar 

  • Chelongar R, Hajihosseinlo A, Ajdary M (2014) The effect of Igf-1 and pit-1 genes polymorphisms on fat-tail measurements (fat-tail dimensions) in Makooei sheep. Adv Environ Biol 8(4):862–867

    CAS  Google Scholar 

  • Coop G, Witonsky D, Di Rienzo A et al (2010) Using environmental correlations to identify loci underlying local adaptation. Genetics 185(4):1411–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford AM, Paterson KA, Dodds KG et al (2006) Discovery of quantitative trait loci for resistance to parasitic nematode infection in sheep: I. Analysis of outcross pedigrees. BMC Genomics 7:178–187

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies G, Stear MJ, Benothman M et al (2006) Quantitative trait loci associated with parasitic infection in Scottish blackface sheep. Heredity 96:252–258

    Article  CAS  PubMed  Google Scholar 

  • Decampos JS, Ikeobi CON, Olowofeso O et al (2013) Effects of coat color genes on body measurements, heat tolerance traits and haematological parameters in West African Dwarf sheep. Open J Genet 3:280–284

    Article  Google Scholar 

  • Dikmen S, Cole JB, Null DJ et al (2012) Heritability of rectal temperature and genetic correlations with production and reproduction traits in dairy cattle. J Dairy Sci 95:3401–3405

    Article  CAS  PubMed  Google Scholar 

  • Drucker AG (2010) Where’s the beef? The economics of AnGR conservation and its influence on policy design and implementation. Anim Genetic Resour 47:85–90

    Article  Google Scholar 

  • Elbeltagy AR, Aboul-Naga AM, Khalifa HH et al (2015) Biological and mathematical analysis of desert sheep and goats responses to natural and acute heat stress, in Egypt. Egypt J Anim Prod 52:45–52

    Google Scholar 

  • Elbeltagy AR, Kim Eui-Soo, Mwacharo JM et al (2016) Genome-wide SNP analysis of small ruminant tolerance to grazing stress under arid desert conditions. In: The XXIV plant and animal genome conference (PAG), San Diego, CA, USA, 8–13 Jan 2016

    Google Scholar 

  • Fadare AO, Sunday OP, Abdulmojeed Y et al (2013) Physiological and haematological indices suggest superior heat tolerance of white-coloured West African Dwarf sheep in the hot humid tropics. Trop Anim Health Prod 45:157–165

    Article  PubMed  Google Scholar 

  • FAO (2012) Phenotypic characterization of animal genetic resources. FAO Animal Production and Health Guidelines No. 11, Rome

    Google Scholar 

  • Fariello M-I, Servin B, Tosser-Klopp G et al (2014) Selection signatures in worldwide sheep populations. PLoS One 9(8):e103813. doi:10.1371/journal.pone.0103813

    Article  PubMed  PubMed Central  Google Scholar 

  • Fourcada J, Hoffman JI (2014) Climate change selects for heterozygosity in a declining for seal population. Nature 511:462–465. doi:10.1038/nature13542

    Article  Google Scholar 

  • Frichot E, Schoville SD, Bouchard G et al (2013) Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol 30(7):1687–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebremedhin KG, Wu B (2002) Simulation of sensible and latent heat losses from wet-skin surface and fur layer. J Thermal Biol 27:291–297

    Article  Google Scholar 

  • Gu JJ, Orr N, Park SD et al (2009) A genome scan for positive selection in thoroughbred horses. PLoS One 4:e5767

    Article  PubMed  PubMed Central  Google Scholar 

  • Hajihossein O, Abbas SJ, Marziyeh A (2015) The relationship of GH and LEP gene polymorphisms with fat-tail measurements (fat-tail dimensions) in fat-tailed Makooei breed of Iranian sheep. Adv Biomed Res 4:172–177

    Google Scholar 

  • Hancock AM, Alkorta-Aranburu G, Witonsky DB et al (2010) Adaptations to new environments in humans: the role of subtle allele frequency shifts. Philos Trans R Soc Lond Ser B Biol Sci 365(1552):2459–2468

    Article  CAS  Google Scholar 

  • Hoffmann JI (2010) Climate change and the characterization, breeding and conservation of animal genetic resources. Anim Genet 41:32–46

    Article  PubMed  Google Scholar 

  • Hoffmann JI (2013) Adaptation to climate change exploring the potential of locally adapted breeds. Animals 7:346–362

    Google Scholar 

  • Huson HJ, Sonstegard TS, Silverstein J et al (2014) Genetic and phenotypic characterization of African goat populations to prioritize conservation and production efforts for small-holder farmers in Sub-Saharan Africa. In: Proceedings of the 10th WCGALP, Vancouver, Canada, 17–22 August 2014

    Google Scholar 

  • Jiang Y, Xie M, Chen W et al (2014) The sheep genome illuminates biology of the rumen and lipid metabolism. Science 344:1168–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joost S, Bonin A, Bruford MW et al (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol 16(18):3955–3969

    Article  CAS  PubMed  Google Scholar 

  • Joost S, Kalbermatten M, Bonin A (2008) Spatial analysis method (SAM): a software tool combining molecular and environmental data to identify candidate loci for selection. Mol Ecol Resour 8:957–960

    Article  PubMed  Google Scholar 

  • Joost S, Vuilleumier S, Jensen JD et al (2013) Uncovering the genetic basis of adaptive change: on the intersection of landscape genomics and theoretical population genetics. Mol Ecol 22:3659–3665

    Article  PubMed  Google Scholar 

  • Kemper KE, Emery DL, Bishop SC et al (2011) The distribution of SNP marker effects for faecal worm egg count in sheep, and the feasibility of using these markers to predict genetic merit for resistance to worm infections. Genet Res 93:203–219

    Article  CAS  Google Scholar 

  • Kijas JW, Townley D, Dalrymple BP et al (2009) A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS One 4(3):e4668. doi:10.1371/journal.pone.0004668

    Article  PubMed  PubMed Central  Google Scholar 

  • Kijas JW, Lenstra JA, Hayes B et al (2012) Genome-wide analysis of the World’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol 10(2):e1001258. doi:10.1371/journal.pbio.1001258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim ES, Elbeltagy AR, Aboul-Naga AM et al (2016) Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity 116(3):255–264

    Article  CAS  PubMed  Google Scholar 

  • Li MH, Tiirikka T, Kantanen J (2014) A genome-wide scan study identifies a single nucleotide substitution in ASIP associated with white versus non-white coat-colour variation in sheep (Ovis aries). Heredity 112(2):122–131

    Article  CAS  PubMed  Google Scholar 

  • Lv FH, Agha S, Kantanen J et al (2014) Adaptations to climate-mediated selective pressures in sheep. Mol Biol Evol 31(12):3324–3343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacCallum C, Hill E (2006) Being positive about selection. PLoS Biol 4(3):e87. doi:10.1371/journal.pbio.0040087

    Article  PubMed  PubMed Central  Google Scholar 

  • Maloney SK, Fuller A, Mitchell D (2009) Climate change: is the dark Soay sheep endangered? Biol Lett 5:826–829

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandonnet N, Aumont G, Fleury J et al (2001) Assessment of genetic variability of resistance to gastrointestinal nematode parasites in Creole goats in the humid tropics. J Anim Sci 79:1706–1712

    Article  CAS  PubMed  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McManus C, Paludo GR, Louvandini H et al (2009) Heat tolerance in Brazilian sheep: physiological and blood parameters. Trop Anim Health Prod 41(1):95–101

    Article  PubMed  Google Scholar 

  • McManus C, Louvandini H, Paim T et al (2011a) The challenge of sheep farming in the tropics: aspects related to heat tolerance. R Bras Zootec 40:107–120

    Google Scholar 

  • McManus C, Louvandini H, Gugel R et al (2011b) Skin and coat traits in sheep in Brazil and their relation with heat tolerance. Trop Anim Health Prod 43:121–126

    Article  PubMed  Google Scholar 

  • Meier K, Hansen MM, Bekkevold D et al (2011) An assessment of the spatial scale of local adaptation in brown trout (Salmo trutta L.): footprints of selection at microsatellite DNA loci. Heredity 106(3):488–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2012) A global assessment of the water footprint of farm animal products. Ecosystems 15:401. doi:10.1007/s10021-011-9517-8

    Article  CAS  Google Scholar 

  • Moradi MH, Nejati-Javaremi A, Moradi-Shahrbabak M et al (2012) Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet 13:10. doi:10.1186/1471-2156-13-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris JE, Cronin GM, Bush RD (2012) Improving sheep production and welfare in extensive systems through precision sheep management. Anim Prod Sci 52:665–670

    Google Scholar 

  • Nielsen A, Steinheim G, Mysterud A (2013) Do different sheep breeds show equal responses to climate fluctuations? Basic Appl Ecol 14:137–145

    Article  Google Scholar 

  • Norris BJ, Whan VA (2008) A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep. Genome Res 18(8):1282–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osman MA, Véronique A, Aboul-Naga AM et al (2012) Adaptation process of farming systems in response to 14 successive years of drought in North West Coastal Zone (Egypt). In: 10th European IFSA symposium, Aarhus, Denmark, 1–4 July 2012

    Google Scholar 

  • Pariset L, Cappuccio I, Joost S et al (2006a) Characterization of single nucleotide polymorphisms in sheep and their variation as evidence of selection. Anim Genet 37(3):290–292

    Article  CAS  PubMed  Google Scholar 

  • Pariset L, Cappuccio I, Ajmone-Marsan P et al (2006b) Characterization of 37 breed-specific single-nucleotide polymorphisms in sheep. J Hered 97(5):531–534

    Article  CAS  PubMed  Google Scholar 

  • Pariset L, Joost S, Marsan PA et al (2009) Econogene consortium (EC). Landscape genomics and biased FST approaches reveal single nucleotide polymorphisms under selection in goat breeds of North-East Mediterranean. BMC Genet 10:7. doi:10.1186/1471-2156-10-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Pariset L, Mariotti M, Gargani M et al (2011) Genetic diversity of sheep breeds from Albania, Greece, and Italy assessed by mitochondrial DNA and nuclear polymorphisms (SNPs). Sci World J 11:1641–1659

    Article  Google Scholar 

  • Pereira CCJ (2005) Fundamentos de bioclimatologia aplicados à produção animal Belo Horizonte: FEPMVZ, 195p

    Google Scholar 

  • Phua SH, Hyndman DL, Baird HJ et al (2014) Towards genomic selection for facial eczema disease tolerance in the New Zealand sheep industry. Anim Genet 45(4):559–564

    Article  CAS  PubMed  Google Scholar 

  • Qanbari S, Pimentel ECG, Tetens J et al (2010) A genome-wide scan for signatures of recent selection in Holstein cattle. Anim Genet 41:377–389

    CAS  PubMed  Google Scholar 

  • Renaudeau D, Collin A, Yahav S et al (2012) Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animals 6:707–728

    CAS  Google Scholar 

  • Reynolds J, Weir BS, Cockerham CC (1983) Estimation of the co-ancestry coefficient: basis for a short-term genetic distance. Genetics 105(3):767–779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riggio V, Matika O, Pong-Wong R et al (2014) A comprehensive genetic study of resistance to nematodes in sheep using the ovine SNP Chip. In: Proceedings of the 10th WCGALP, Vancouver, Canada

    Google Scholar 

  • Sallé G, Jacquiet P, Gruner L et al (2012) A genome scan for QTL affecting resistance to Haemonchus contortus in sheep. J Anim Sci 90:4690–4705

    Article  PubMed  Google Scholar 

  • Shimada Y, Shikano T, Merilä J (2011) A high incidence of selection on physiologically important genes in the three-spined stickleback, Gasterosteus aculeatus. Mol Biol Evol 28(1):181–193

    Article  CAS  PubMed  Google Scholar 

  • Shinde AK, Sejian V (2013) Sheep husbandry under changing climate scenario in India: an overview. Ind J Anim Sci 83(10):998–1008

    Google Scholar 

  • Silva RG (2000) Introdução à bioclimatologia animal. Nobel, São Paulo, 286 p

    Google Scholar 

  • Stella A, Ajmone-Marsan P, Lazzari B et al (2010) Identification of selection signatures in cattle breeds selected for dairy production. Genetics 185:1451–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornton PK, Van de Steeg J, Notenbaert A et al (2009) The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. Agric Syst 101:113–127

    Article  Google Scholar 

  • Thornton PK, Ericksen PJ, Herrero M et al (2014) Climate variability and vulnerability to climate change: a review. Glob Change Biol 20:3313–3328

    Google Scholar 

Download references

Acknowledgments

The author acknowledges the support of Prof. Max F. Rothschild, Iowa State University, the USA, for reviewing and offering helpful comments on this chapter. Financial support during the author’s stay in the USA was provided by the Fulbright Foundation, the Egyptian government, and the Ensminger endowment at Iowa State University and is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed R. Elbeltagy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Elbeltagy, A.R. (2017). Sheep Genetic Diversity and Breed Differences for Climate-Change Adaptation. In: Sejian, V., Bhatta, R., Gaughan, J., Malik, P., Naqvi, S., Lal, R. (eds) Sheep Production Adapting to Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-10-4714-5_6

Download citation

Publish with us

Policies and ethics