Skip to main content

Lymphoid Tissues Associated with Gastrointestinal (GI) Mucosa

  • Chapter
  • First Online:
Lymph Node Metastasis in Gastrointestinal Cancer

Abstract

GI mucosa covers huge area of internal but outside of the body and encounters tremendous numbers and amounts of food antigens and nonpathogenic microorganisms, and occasionally expose to pathogens. Mucosa-associated lymphoid tissue or gut-associated lymphoid tissue (GALT) is a key organized lymphoid structure for the regulation and induction of antigen-specific immune responses. In this chapter, we describe the structure, function, and development of several types of GALTs, including Peyer’s patches, cecum patches, colonic patches, isolated lymphoid follicles, mesenteric lymph nodes, and cryptopatches. Lymphoid tissues associated with small intestine and large intestine are not only anatomically but also immunologically segregated for the induction of necessary immune responses. In addition, the GALT development can be divided into pre- and postnatal organogenesis with similarity and differences existing in the molecular and cellular requirement. Prenatal development of GALT is programed in the ontogeny, while postnatal development of GALT is controlled by external stimuli such as microbial stimulation and dietary materials. Therefore, each GALT shares some common features with unique function and developmental requirement which contribute for the creation of dynamism and homeostasis of gut immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pabst R. Plasticity and heterogeneity of lymphoid organs. What are the criteria to call a lymphoid organ primary, secondary or tertiary? Immunol Lett. 2007;112(1):1–8. https://doi.org/10.1016/j.imlet.2007.06.009.

    Article  CAS  PubMed  Google Scholar 

  2. Turley SJ, Fletcher AL, Elpek KG. The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nat Rev Immunol. 2010;10(12):813–25. https://doi.org/10.1038/nri2886.

    Article  CAS  PubMed  Google Scholar 

  3. Kunisawa J, Nochi T, Kiyono H. Immunological commonalities and distinctions between airway and digestive immunity. Trends Immunol. 2008;29(11):505–13. https://doi.org/10.1016/j.it.2008.07.008.

    Article  CAS  PubMed  Google Scholar 

  4. Mizoguchi A, Mizoguchi E, Chiba C, Bhan AK. Role of appendix in the development of inflammatory bowel disease in TCR-α mutant mice. J Exp Med. 1996;184(2):707–15.

    Article  CAS  PubMed  Google Scholar 

  5. Baptista AP, Olivier BJ, Goverse G, Greuter M, Knippenberg M, Kusser K, et al. Colonic patch and colonic SILT development are independent and differentially regulated events. Mucosal Immunol. 2013;6(3):511–21. https://doi.org/10.1038/mi.2012.90.

    Article  CAS  PubMed  Google Scholar 

  6. O’Leary AD, Sweeney EC. Lymphoglandular complexes of the colon: structure and distribution. Histopathology. 1986;10(3):267–83.

    Article  PubMed  Google Scholar 

  7. Masahata K, Umemoto E, Kayama H, Kotani M, Nakamura S, Kurakawa T, et al. Generation of colonic IgA-secreting cells in the caecal patch. Nat Commun. 2014;5:3704. https://doi.org/10.1038/ncomms4704.

    Article  CAS  PubMed  Google Scholar 

  8. Hamada H, Hiroi T, Nishiyama Y, Takahashi H, Masunaga Y, Hachimura S, et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol. 2002;168(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  9. Moghaddami M, Cummins A, Mayrhofer G. Lymphocyte-filled villi: comparison with other lymphoid aggregations in the mucosa of the human small intestine. Gastroenterology. 1998;115(6):1414–25.

    Article  CAS  PubMed  Google Scholar 

  10. Dohi T, Fujihashi K, Rennert PD, Iwatani K, Kiyono H, McGhee JR. Hapten-induced colitis is associated with colonic patch hypertrophy and T helper cell 2-type responses. J Exp Med. 1999;189(8):1169–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Owen RL. Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer’s patches in the normal unobstructed mouse intestine: an ultrastructural study. Gastroenterology. 1977;72(3):440–51.

    CAS  PubMed  Google Scholar 

  12. Clark MA, Jepson MA, Simmons NL, Hirst BH. Differential surface characteristics of M cells from mouse intestinal Peyer’s and caecal patches. Histochem J. 1994;26(3):271–80.

    Article  CAS  PubMed  Google Scholar 

  13. Kweon MN, Yamamoto M, Rennert PD, Park EJ, Lee AY, Chang SY, et al. Prenatal blockage of lymphotoxin β receptor and TNF receptor p55 signaling cascade resulted in the acceleration of tissue genesis for isolated lymphoid follicles in the large intestine. J Immunol. 2005;174(7):4365–72.

    Article  CAS  PubMed  Google Scholar 

  14. Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 2013;6(4):666–77. https://doi.org/10.1038/mi.2013.30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Terahara K, Yoshida M, Igarashi O, Nochi T, Pontes GS, Hase K, et al. Comprehensive gene expression profiling of Peyer’s patch M cells, villous M-like cells, and intestinal epithelial cells. J Immunol. 2008;180(12):7840–6.

    Article  CAS  PubMed  Google Scholar 

  16. Nakato G, Fukuda S, Hase K, Goitsuka R, Cooper MD, Ohno H. New approach for m-cell-specific molecules screening by comprehensive transcriptome analysis. DNA Res. 2009;16(4):227–35. https://doi.org/10.1093/dnares/dsp013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hase K, Kawano K, Nochi T, Pontes GS, Fukuda S, Ebisawa M, et al. Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature. 2009;462(7270):226–30. https://doi.org/10.1038/nature08529.

    Article  CAS  PubMed  Google Scholar 

  18. Nakato G, Hase K, Suzuki M, Kimura M, Ato M, Hanazato M, et al. Cutting Edge: Brucella abortus exploits a cellular prion protein on intestinal M cells as an invasive receptor. J Immunol. 2012;189(4):1540–4. https://doi.org/10.4049/jimmunol.1103332.

    Article  CAS  PubMed  Google Scholar 

  19. Tsuji M, Suzuki K, Kitamura H, Maruya M, Kinoshita K, Ivanov II, et al. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity. 2008;29(2):261–71. https://doi.org/10.1016/j.immuni.2008.05.014.

    Article  CAS  PubMed  Google Scholar 

  20. Pabst O, Ohl L, Wendland M, Wurbel MA, Kremmer E, Malissen B, et al. Chemokine receptor CCR9 contributes to the localization of plasma cells to the small intestine. J Exp Med. 2004;199(3):411–6. https://doi.org/10.1084/jem.20030996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu S, Yang K, Yang J, Li M, Xiong N. Critical roles of chemokine receptor CCR10 in regulating memory IgA responses in intestines. Proc Natl Acad Sci U S A. 2011;108(45):E1035–44. https://doi.org/10.1073/pnas.1100156108.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C, Song SY. Retinoic acid imprints gut-homing specificity on T cells. Immunity. 2004;21(4):527–38. https://doi.org/10.1016/j.immuni.2004.08.011.

    Article  CAS  PubMed  Google Scholar 

  23. Mora JR, Iwata M, Eksteen B, Song SY, Junt T, Senman B, et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science. 2006;314(5802):1157–60. https://doi.org/10.1126/science.1132742.

    Article  CAS  PubMed  Google Scholar 

  24. Kim SV, Xiang WV, Kwak C, Yang Y, Lin XW, Ota M, et al. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science. 2013;340(6139):1456–9. https://doi.org/10.1126/science.1237013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tilney NL. Patterns of lymphatic drainage in the adult laboratory rat. J Anat. 1971;109(Pt 3):369–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Carter PB, Collins FM. The route of enteric infection in normal mice. J Exp Med. 1974;139(5):1189–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Van den Broeck W, Derore A, Simoens P. Anatomy and nomenclature of murine lymph nodes: descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J Immunol Methods. 2006;312(1–2):12–9. https://doi.org/10.1016/j.jim.2006.01.022.

    Article  CAS  PubMed  Google Scholar 

  28. Houston SA, Cerovic V, Thomson C, Brewer J, Mowat AM, Milling S. The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct. Mucosal Immunol. 2016;9(2):468–78. https://doi.org/10.1038/mi.2015.77.

    Article  CAS  PubMed  Google Scholar 

  29. Toivonen R, Kong L, Rasool O, Lund RJ, Lahesmaa R, Hanninen A. Activation of plasmacytoid dendritic cells in colon-draining lymph nodes during citrobacter rodentium infection involves pathogen-sensing and inflammatory pathways distinct from conventional dendritic cells. J Immunol. 2016;196(11):4750–9. https://doi.org/10.4049/jimmunol.1600235.

    Article  CAS  PubMed  Google Scholar 

  30. Spiller RC. Intestinal absorptive function. Gut. 1994;35(1 Suppl):S5–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nordgaard I, Mortensen PB. Digestive processes in the human colon. Nutrition. 1995;11(1):37–45.

    CAS  PubMed  Google Scholar 

  32. Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J Exp Med. 2007;204(8):1757–64. https://doi.org/10.1084/jem.20070590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med. 2007;204(8):1775–85. https://doi.org/10.1084/jem.20070602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kanamori Y, Ishimaru K, Nanno M, Maki K, Ikuta K, Nariuchi H, et al. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. J Exp Med. 1996;184(4):1449–59.

    Article  CAS  PubMed  Google Scholar 

  35. Hitotsumatsu O, Hamada H, Naganuma M, Inoue N, Ishii H, Hibi T, et al. Identification and characterization of novel gut-associated lymphoid tissues in rat small intestine. J Gastroenterol. 2005;40(10):956–63. https://doi.org/10.1007/s00535-005-1679-8.

    Article  PubMed  Google Scholar 

  36. Eberl G, Littman DR. Thymic origin of intestinal alphabeta T cells revealed by fate mapping of RORγt+ cells. Science. 2004;305(5681):248–51. https://doi.org/10.1126/science.1096472.

    Article  CAS  PubMed  Google Scholar 

  37. Saito H, Kanamori Y, Takemori T, Nariuchi H, Kubota E, Takahashi-Iwanaga H, et al. Generation of intestinal T cells from progenitors residing in gut cryptopatches. Science. 1998;280(5361):275–8.

    Article  CAS  PubMed  Google Scholar 

  38. Suzuki K, Oida T, Hamada H, Hitotsumatsu O, Watanabe M, Hibi T, et al. Gut cryptopatches: direct evidence of extrathymic anatomical sites for intestinal T lymphopoiesis. Immunity. 2000;13(5):691–702.

    Article  CAS  PubMed  Google Scholar 

  39. Oida T, Suzuki K, Nanno M, Kanamori Y, Saito H, Kubota E, et al. Role of gut cryptopatches in early extrathymic maturation of intestinal intraepithelial T cells. J Immunol. 2000;164(7):3616–26.

    Article  CAS  PubMed  Google Scholar 

  40. Bruno L, Rocha B, Rolink A, von Boehmer H, Rodewald HR. Intra- and extra-thymic expression of the pre-T cell receptor alpha gene. Eur J Immunol. 1995;25(7):1877–82. https://doi.org/10.1002/eji.1830250713.

    Article  CAS  PubMed  Google Scholar 

  41. Fehling HJ, Krotkova A, Saint-Ruf C, von Boehmer H. Crucial role of the pre-T-cell receptor α gene in development of αβ but not γδT cells. Nature. 1995;375(6534):795–8. https://doi.org/10.1038/375795a0.

    Article  CAS  PubMed  Google Scholar 

  42. Eberl G. Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway? Nat Rev Immunol. 2005;5(5):413–20. https://doi.org/10.1038/nri1600.

    Article  CAS  PubMed  Google Scholar 

  43. Lorenz RG, Chaplin DD, McDonald KG, McDonough JS, Newberry RD. Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin β receptor, and TNF receptor I function. J Immunol. 2003;170(11):5475–82.

    Article  CAS  PubMed  Google Scholar 

  44. Aloisi F, Pujol-Borrell R. Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol. 2006;6(3):205–17. https://doi.org/10.1038/nri1786.

    Article  CAS  PubMed  Google Scholar 

  45. Spahn TW, Herbst H, Rennert PD, Lugering N, Maaser C, Kraft M, et al. Induction of colitis in mice deficient of Peyer’s patches and mesenteric lymph nodes is associated with increased disease severity and formation of colonic lymphoid patches. Am J Pathol. 2002;161(6):2273–82. https://doi.org/10.1016/s0002-9440(10)64503-8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lochner M, Ohnmacht C, Presley L, Bruhns P, Si-Tahar M, Sawa S, et al. Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORγt and LTi cells. J Exp Med. 2011;208(1):125–34. https://doi.org/10.1084/jem.20100052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oshima C, Okazaki K, Matsushima Y, Sawada M, Chiba T, Takahashi K, et al. Induction of follicular gastritis following postthymectomy autoimmune gastritis in Helicobacter pylori-infected BALB/c mice. Infect Immun. 2000;68(1):100–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shiu J, Piazuelo MB, Ding H, Czinn SJ, Drakes ML, Banerjee A, et al. Gastric LTi cells promote lymphoid follicle formation but are limited by IRAK-M and do not alter microbial growth. Mucosal Immunol. 2015;8(5):1047–59. https://doi.org/10.1038/mi.2014.132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Adachi S, Yoshida H, Kataoka H, Nishikawa S. Three distinctive steps in Peyer’s patch formation of murine embryo. Int Immunol. 1997;9(4):507–14.

    Article  CAS  PubMed  Google Scholar 

  50. Spencer J, MacDonald TT, Finn T, Isaacson PG. The development of gut associated lymphoid tissue in the terminal ileum of fetal human intestine. Clin Exp Immunol. 1986;64(3):536–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mebius RE. Organogenesis of lymphoid tissues. Nat Rev Immunol. 2003;3(4):292–303. https://doi.org/10.1038/nri1054.

    Article  CAS  PubMed  Google Scholar 

  52. Bar-Ephraim YE, Mebius RE. Innate lymphoid cells in secondary lymphoid organs. Immunol Rev. 2016;271(1):185–99. https://doi.org/10.1111/imr.12407.

    Article  CAS  PubMed  Google Scholar 

  53. Mebius RE, Miyamoto T, Christensen J, Domen J, Cupedo T, Weissman IL, et al. The fetal liver counterpart of adult common lymphoid progenitors gives rise to all lymphoid lineages, CD45+CD4+CD3 cells, as well as macrophages. J Immunol. 2001;166(11):6593–601.

    Article  CAS  PubMed  Google Scholar 

  54. Yoshida H, Kawamoto H, Santee SM, Hashi H, Honda K, Nishikawa S, et al. Expression of α4β7 integrin defines a distinct pathway of lymphoid progenitors committed to T cells, fetal intestinal lymphotoxin producer, NK, and dendritic cells. J Immunol. 2001;167(5):2511–21.

    Article  CAS  PubMed  Google Scholar 

  55. Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S, et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature. 1999;397(6721):702–6. https://doi.org/10.1038/17812.

    Article  CAS  PubMed  Google Scholar 

  56. Boos MD, Yokota Y, Eberl G, Kee BL. Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J Exp Med. 2007;204(5):1119–30. https://doi.org/10.1084/jem.20061959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sun Z, Unutmaz D, Zou YR, Sunshine MJ, Pierani A, Brenner-Morton S, et al. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science. 2000;288(5475):2369–73.

    Article  CAS  PubMed  Google Scholar 

  58. Eberl G, Marmon S, Sunshine MJ, Rennert PD, Choi Y, Littman DR. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat Immunol. 2004;5(1):64–73. https://doi.org/10.1038/ni1022.

    Article  CAS  PubMed  Google Scholar 

  59. Tachibana M, Tenno M, Tezuka C, Sugiyama M, Yoshida H, Taniuchi I. Runx1/Cbfβ2 complexes are required for lymphoid tissue inducer cell differentiation at two developmental stages. J Immunol. 2011;186(3):1450–7. https://doi.org/10.4049/jimmunol.1000162.

    Article  CAS  PubMed  Google Scholar 

  60. Fukuyama S, Nagatake T, Kim DY, Takamura K, Park EJ, Kaisho T, et al. Cutting edge: uniqueness of lymphoid chemokine requirement for the initiation and maturation of nasopharynx-associated lymphoid tissue organogenesis. J Immunol. 2006;177(7):4276–80.

    Article  CAS  PubMed  Google Scholar 

  61. Finke D, Acha-Orbea H, Mattis A, Lipp M, Kraehenbuhl J. CD4+CD3 cells induce Peyer’s patch development: role of α4β1 integrin activation by CXCR5. Immunity. 2002;17(3):363–73.

    Article  CAS  PubMed  Google Scholar 

  62. Honda K, Nakano H, Yoshida H, Nishikawa S, Rennert P, Ikuta K, et al. Molecular basis for hematopoietic/mesenchymal interaction during initiation of Peyer’s patch organogenesis. J Exp Med. 2001;193(5):621–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yoshida H, Naito A, Inoue J, Satoh M, Santee-Cooper SM, Ware CF, et al. Different cytokines induce surface lymphotoxin-αβ on IL-7 receptor-α cells that differentially engender lymph nodes and Peyer’s patches. Immunity. 2002;17(6):823–33.

    Article  CAS  PubMed  Google Scholar 

  64. Futterer A, Mink K, Luz A, Kosco-Vilbois MH, Pfeffer K. The lymphotoxin β receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity. 1998;9(1):59–70.

    Article  CAS  PubMed  Google Scholar 

  65. Shinkura R, Kitada K, Matsuda F, Tashiro K, Ikuta K, Suzuki M, et al. Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-κ b-inducing kinase. Nat Genet. 1999;22(1):74–7. https://doi.org/10.1038/8780.

    Article  CAS  PubMed  Google Scholar 

  66. Yin L, Wu L, Wesche H, Arthur CD, White JM, Goeddel DV, et al. Defective lymphotoxin-β receptor-induced NF-κB transcriptional activity in NIK-deficient mice. Science. 2001;291(5511):2162–5. https://doi.org/10.1126/science.1058453.

    Article  CAS  PubMed  Google Scholar 

  67. Matsushima A, Kaisho T, Rennert PD, Nakano H, Kurosawa K, Uchida D, et al. Essential role of nuclear factor (NF)-κB-inducing kinase and inhibitor of κB (IκB) kinase α in NF-κB activation through lymphotoxin β receptor, but not through tumor necrosis factor receptor I. J Exp Med. 2001;193(5):631–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nishikawa S, Honda K, Vieira P, Yoshida H. Organogenesis of peripheral lymphoid organs. Immunol Rev. 2003;195:72–80.

    Article  CAS  PubMed  Google Scholar 

  69. Ngo VN, Korner H, Gunn MD, Schmidt KN, Riminton DS, Cooper MD, et al. Lymphotoxin α/β and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J Exp Med. 1999;189(2):403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. van de Pavert SA, Olivier BJ, Goverse G, Vondenhoff MF, Greuter M, Beke P, et al. Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nat Immunol. 2009;10(11):1193–9. https://doi.org/10.1038/ni.1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Veiga-Fernandes H, Coles MC, Foster KE, Patel A, Williams A, Natarajan D, et al. Tyrosine kinase receptor RET is a key regulator of Peyer’s patch organogenesis. Nature. 2007;446(7135):547–51. https://doi.org/10.1038/nature05597.

    Article  CAS  PubMed  Google Scholar 

  72. Fukuyama S, Kiyono H. Neuroregulator RET initiates Peyer’s-patch tissue genesis. Immunity. 2007;26(4):393–5. https://doi.org/10.1016/j.immuni.2007.04.004.

    Article  CAS  PubMed  Google Scholar 

  73. Kyriazis AA, Esterly JR. Development of lymphoid tissues in the human embryo and early fetus. Arch Pathol. 1970;90(4):348–53.

    CAS  PubMed  Google Scholar 

  74. Cupedo T, Crellin NK, Papazian N, Rombouts EJ, Weijer K, Grogan JL, et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat Immunol. 2009;10(1):66–74. https://doi.org/10.1038/ni.1668.

    Article  CAS  PubMed  Google Scholar 

  75. De Togni P, Goellner J, Ruddle NH, Streeter PR, Fick A, Mariathasan S, et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science. 1994;264(5159):703–7.

    Article  PubMed  Google Scholar 

  76. Banks TA, Rouse BT, Kerley MK, Blair PJ, Godfrey VL, Kuklin NA, et al. Lymphotoxin-α-deficient mice. Effects on secondary lymphoid organ development and humoral immune responsiveness. J Immunol. 1995;155(4):1685–93.

    CAS  PubMed  Google Scholar 

  77. Koni PA, Sacca R, Lawton P, Browning JL, Ruddle NH, Flavell RA. Distinct roles in lymphoid organogenesis for lymphotoxins α and β revealed in lymphotoxin β-deficient mice. Immunity. 1997;6(4):491–500.

    Article  CAS  PubMed  Google Scholar 

  78. Alimzhanov MB, Kuprash DV, Kosco-Vilbois MH, Luz A, Turetskaya RL, Tarakhovsky A, et al. Abnormal development of secondary lymphoid tissues in lymphotoxin β-deficient mice. Proc Natl Acad Sci U S A. 1997;94(17):9302–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Scheu S, Alferink J, Potzel T, Barchet W, Kalinke U, Pfeffer K. Targeted disruption of LIGHT causes defects in costimulatory T cell activation and reveals cooperation with lymphotoxin β in mesenteric lymph node genesis. J Exp Med. 2002;195(12):1613–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Koni PA, Flavell RA. A role for tumor necrosis factor receptor type 1 in gut-associated lymphoid tissue development: genetic evidence of synergism with lymphotoxin β. J Exp Med. 1998;187(12):1977–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Forster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell. 1996;87(6):1037–47.

    Article  CAS  PubMed  Google Scholar 

  82. Ansel KM, Ngo VN, Hyman PL, Luther SA, Forster R, Sedgwick JD, et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature. 2000;406(6793):309–14. https://doi.org/10.1038/35018581.

    Article  CAS  PubMed  Google Scholar 

  83. Kim D, Mebius RE, MacMicking JD, Jung S, Cupedo T, Castellanos Y, et al. Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE. J Exp Med. 2000;192(10):1467–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397(6717):315–23. https://doi.org/10.1038/16852.

    Article  CAS  PubMed  Google Scholar 

  85. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13(18):2412–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells. 1999;4(6):353–62.

    Article  CAS  PubMed  Google Scholar 

  87. Adachi S, Yoshida H, Honda K, Maki K, Saijo K, Ikuta K, et al. Essential role of IL-7 receptor α in the formation of Peyer’s patch anlage. Int Immunol. 1998;10(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  88. Cao X, Shores EW, Hu-Li J, Anver MR, Kelsall BL, Russell SM, et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor γ chain. Immunity. 1995;2(3):223–38.

    Article  CAS  PubMed  Google Scholar 

  89. Park SY, Saijo K, Takahashi T, Osawa M, Arase H, Hirayama N, et al. Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity. 1995;3(6):771–82.

    Article  CAS  PubMed  Google Scholar 

  90. Okuda M, Togawa A, Wada H, Nishikawa S. Distinct activities of stromal cells involved in the organogenesis of lymph nodes and Peyer’s patches. J Immunol. 2007;179(2):804–11.

    Article  CAS  PubMed  Google Scholar 

  91. McDonald KG, McDonough JS, Newberry RD. Adaptive immune responses are dispensable for isolated lymphoid follicle formation: antigen-naive, lymphotoxin-sufficient B lymphocytes drive the formation of mature isolated lymphoid follicles. J Immunol. 2005;174(9):5720–8.

    Article  CAS  PubMed  Google Scholar 

  92. Bouskra D, Brezillon C, Berard M, Werts C, Varona R, Boneca IG, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 2008;456(7221):507–10. https://doi.org/10.1038/nature07450.

    Article  CAS  PubMed  Google Scholar 

  93. McDonald KG, McDonough JS, Wang C, Kucharzik T, Williams IR, Newberry RD. CC chemokine receptor 6 expression by B lymphocytes is essential for the development of isolated lymphoid follicles. Am J Pathol. 2007;170(4):1229–40. https://doi.org/10.2353/ajpath.2007.060817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lugering A, Kucharzik T, Soler D, Picarella D, Hudson JT 3rd, Williams IR. Lymphoid precursors in intestinal cryptopatches express CCR6 and undergo dysregulated development in the absence of CCR6. J Immunol. 2003;171(5):2208–15.

    Article  PubMed  Google Scholar 

  95. Lugering A, Ross M, Sieker M, Heidemann J, Williams IR, Domschke W, et al. CCR6 identifies lymphoid tissue inducer cells within cryptopatches. Clin Exp Immunol. 2010;160(3):440–9. https://doi.org/10.1111/j.1365-2249.2010.04103.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kiss EA, Vonarbourg C, Kopfmann S, Hobeika E, Finke D, Esser C, et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science. 2011;334(6062):1561–5. https://doi.org/10.1126/science.1214914.

    Article  CAS  PubMed  Google Scholar 

  97. Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, Nukaya M, et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol. 2011;13(2):144–51. https://doi.org/10.1038/ni.2187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kiyono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagatake, T., Kunisawa, J., Kiyono, H. (2019). Lymphoid Tissues Associated with Gastrointestinal (GI) Mucosa. In: Natsugoe, S. (eds) Lymph Node Metastasis in Gastrointestinal Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-10-4699-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4699-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4698-8

  • Online ISBN: 978-981-10-4699-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics