Skip to main content

Functional Distribution of Archaeal Chaperonins

  • Chapter
  • First Online:
Prokaryotic Chaperonins

Part of the book series: Heat Shock Proteins ((HESP,volume 11))

  • 504 Accesses

Abstract

Chaperonin, also known as heat shock protein 60 (Hsp60), belongs to an evolutionarily conserved protein family that enables cells to survive under stressful conditions, including elevated or reduced temperature, high or low salinity, acidic/alkaline environments, and high or low osmotic pressure. Archaeal genomes generally contain multiple genes encoding chaperonins. For example, the hyperthermophilic archaeon Thermococcus kodakarensis, which grows optimally at 85 °C, has both a cold-inducible (CpkA) and a heat-inducible (CpkB) chaperonin, which are involved in adaptation to low and high temperatures, respectively. These two chaperonins share high sequence identity (77%), except in their carboxy-terminal regions. Furthermore, depletion of cpkA or cpkB results in growth defects under cold stress (60 °C) or heat stress (93 °C), respectively, but not at the optimal temperature (85 °C). These observations indicate that CpkA and CpkB are necessary for cell growth at lower and higher stressed temperatures, respectively. Immunoprecipitation studies using specific antisera revealed that CpkA and CpkB recognize different types of proteins, i.e., that they have distinct substrate spectra. Likewise, several extremophilic archaea encode paralogous chaperonins that are differentially regulated during stresses such as heat, cold, high salt, pH, pressure, and nutrient deprivation, suggesting that these chaperonins might encounter different substrates depending on the type of stress confronting the cell. Extra chaperonin genes may have arisen to assist in protein folding under types of selective pressure in which the constitutively expressed chaperonin is unable to function, and here we speculate about the significance of multiple chaperonin genes in archaea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anton J, Oren A, Benlloch S, Rodriguez-Valera F, Amann R, Rossello-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52(Pt 2):485–491. doi:10.1099/00207713-52-2-485

    Article  CAS  PubMed  Google Scholar 

  • Auman AJ, Breezee JL, Gosink JJ, Kampfer P, Staley JT (2006) Psychromonas ingrahamii sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice. Int J Syst Evol Microbiol 56(Pt 5):1001–1007. doi:10.1099/ijs.0.64068-0

    Article  CAS  PubMed  Google Scholar 

  • Bakermans C, Ayala-del-Rio HL, Ponder MA, Vishnivetskaya T, Gilichinsky D, Thomashow MF, Tiedje JM (2006) Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int J Syst Evol Microbiol 56(Pt 6):1285–1291. doi:10.1099/ijs.0.64043-0

    Article  CAS  PubMed  Google Scholar 

  • Birrien JL, Zeng X, Jebbar M, Cambon-Bonavita MA, Querellou J, Oger P, Bienvenu N, Xiao X, Prieur D (2011) Pyrococcus yayanosii sp. nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 61(Pt 12):2827–2831. doi:10.1099/ijs.0.024653-0

    Article  CAS  PubMed  Google Scholar 

  • Bowers KJ, Wiegel J (2011) Temperature and pH optima of extremely halophilic archaea: a mini-review. Extremophiles 15(2):119–128. doi:10.1007/s00792-010-0347-y

    Article  CAS  PubMed  Google Scholar 

  • Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98(1):289–297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burggraf S, Jannasch HW, Nicolaus B, Stetter KO (1990) Archaeoglobus-Profundus Sp-Nov, represents a new species within the sulfate-reducing archaebacteria. Syst Appl Microbiol 13(1):24–28

    Article  Google Scholar 

  • Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodriguez-Valera F, Bolhuis H, Dyall-Smith ML (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57(Pt 2):387–392. doi:10.1099/ijs.0.64690-0

    Article  CAS  PubMed  Google Scholar 

  • Chen HY, Chu ZM, Ma YH, Zhang Y, Yang SL (2007) Expression and characterization of the chaperonin molecular machine from the hyperthermophilic archaeon Pyrococcus furiosus. J Basic Microbiol 47(2):132–137. doi:10.1002/jobm.200610215

    Article  CAS  PubMed  Google Scholar 

  • Condo I, Ruggero D, Reinhardt R, Londei P (1998) A novel aminopeptidase associated with the 60 kDa chaperonin in the thermophilic archaeon Sulfolobus solfataricus. Mol Microbiol 29(3):775–785

    Article  CAS  PubMed  Google Scholar 

  • Coordinators NR (2016) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 44(DI):D7–19. doi:10.1093/nar/gkv1290

    Google Scholar 

  • Darland G, Brock TD, Samsonoff W, Conti SF (1970) A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. Science 170(3965):1416–1418

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara S, Aki R, Yoshida M, Higashibata H, Imanaka T, Fukuda W (2008) Expression profiles and physiological roles of two types of molecular chaperonins from the hyperthermophilic archaeon Thermococcus kodakarensis. Appl Environ Microbiol 74(23):7306–7312. doi:10.1128/AEM.01245-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L, Danno A, Fujii S, Fukuda W, Imanaka T, Fujiwara S (2012) Indole-3-glycerol-phosphate synthase is recognized by a cold-inducible group II chaperonin in Thermococcus kodakarensis. Appl Environ Microbiol 78(11):3806–3815. doi:10.1128/AEM.07996-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L, Imanaka T, Fujiwara S (2015) A mutant Chaperonin that is functional at lower temperatures enables hyperthermophilic archaea to grow under cold-stress conditions. J Bacteriol 197(16):2642–2652. doi:10.1128/JB.00279-15

    Article  CAS  PubMed  Google Scholar 

  • Garrity GM (2001) Bergey’s manual of systematic bacteriology. The archaea and the deeply branching and phototrophic bacteria, 2nd edn. Springer, New York

    Google Scholar 

  • Gonzalez JM, Masuchi Y, Robb FT, Ammerman JW, Maeder DL, Yanagibayashi M, Tamaoka J, Kato C (1998) Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa trough. Extremophiles 2(2):123–130

    Article  CAS  PubMed  Google Scholar 

  • Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G, Busse HJ, Stan-Lotter H (2004) Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum. Extremophiles 8(6):431–439. doi:10.1007/s00792-004-0403-6

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez MC, Castillo AM, Kamekura M, Xue Y, Ma Y, Cowan DA, Jones BE, Grant WD, Ventosa A (2007) Halopiger xanaduensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from saline lake Shangmatala in Inner Mongolia, China. Int J Syst Evol Microbiol 57(Pt 7):1402–1407. doi:10.1099/ijs.0.65001-0

    Article  CAS  PubMed  Google Scholar 

  • Harrison AP (1981) Acidiphilium-Cryptum Gen-Nov, Sp-Nov, heterotrophic bacterium from acidic mineral environments. Int J Syst Bacteriol 31(3):327–332

    Article  Google Scholar 

  • Hirtreiter AM, Calloni G, Forner F, Scheibe B, Puype M, Vandekerckhove J, Mann M, Hartl FU, Hayer-Hartl M (2009) Differential substrate specificity of group I and group II chaperonins in the archaeon Methanosarcina mazei. Mol Microbiol 74(5):1152–1168. doi:10.1111/j.1365-2958.2009.06924.x

    Article  CAS  PubMed  Google Scholar 

  • Ihara K, Watanabe S, Tamura T (1997) Haloarcula argentinensis sp. nov. and Haloarcula mukohataei sp. nov., two new extremely halophilic archaea collected in Argentina. Int J Syst Bacteriol 47(1):73–77. doi:10.1099/00207713-47-1-73

    Article  CAS  PubMed  Google Scholar 

  • Iizuka R, Yoshida T, Shomura Y, Miki K, Maruyama T, Odaka M, Yohda M (2003) ATP binding is critical for the conformational change from an open to closed state in archaeal group II chaperonin. J Biol Chem 278(45):44959–44965. doi:10.1074/jbc.M305484200

    Article  CAS  PubMed  Google Scholar 

  • Izumi M, Fujiwara S, Takagi M, Fukui K, Imanaka T (2001) Two kinds of archaeal chaperonin with different temperature dependency from a hyperthermophile. Biochem Biophys Res Commun 280(2):581–587. doi:10.1006/bbrc.2000.4154

    Article  CAS  PubMed  Google Scholar 

  • Izumi M, Fujiwara S, Takagi M, Kanaya S, Imanaka T (1999) Isolation and characterization of a second subunit of molecular chaperonin from Pyrococcus kodakaraensis KOD1: analysis of an ATPase-deficient mutant enzyme. Appl Environ Microbiol 65(4):1801–1805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn U, Gallenberger M, Paper W, Junglas B, Eisenreich W, Stetter KO, Rachel R, Huber H (2008) Nanoarchaeum equitans and Ignicoccus hospitalis: new insights into a unique, intimate association of two archaea. J Bacteriol 190(5):1743–1750. doi:10.1128/JB.01731-07

    Article  CAS  PubMed  Google Scholar 

  • Jeanthon C, L’Haridon S, Reysenbach AL, Corre E, Vernet M, Messner P, Sleytr UB, Prieur D (1999) Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213T as Methanococcus fervens sp. nov. Int J Syst Bacteriol 49(Pt 2):583–589. doi:10.1099/00207713-49-2-583

    Article  PubMed  Google Scholar 

  • Jones PG, VanBogelen RA, Neidhardt FC (1987) Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol 169(5):2092–2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapatai G, Large A, Benesch JL, Robinson CV, Carrascosa JL, Valpuesta JM, Gowrinathan P, Lund PA (2006) All three chaperonin genes in the archaeon Haloferax volcanii are individually dispensable. Mol Microbiol 61(6):1583–1597. doi:10.1111/j.1365-2958.2006.05324.x

    Article  CAS  PubMed  Google Scholar 

  • Kumar CM, Mande SC, Mahajan G (2015) Multiple chaperonins in bacteria—novel functions and non-canonical behaviors. Cell Stress Chaperones 20(4):555–74. doi:10.1007/s12192-015-0598-8

  • Lars Ditzel, Jan Löwe, Daniela Stock, Karl-Otto Stetter, Harald Huber, Robert Huber, Stefan Steinbacher, (1998) Crystal Structure of the Thermosome, the Archaeal Chaperonin and Homolog of CCT. Cell 93(1):125–138

    Google Scholar 

  • Lund PA (2009) Multiple chaperonins in bacteria – why so many? FEMS Microbiol Rev 33(4):785–800. doi:10.1111/j.1574-6976.2009.00178.x

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Robb FT (2011) A modulator domain controlling thermal stability in the group II chaperonins of archaea. Arch Biochem Biophys 512(1):111–118. doi:10.1016/j.abb.2011.04.017

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Zhang P, Robb FT (2011) Oligomerization of an archaeal group II chaperonin is mediated by N-terminal salt bridges. Biochem Biophys Res Commun 413(2):389–394. doi:10.1016/j.bbrc.2011.08.112

    Article  CAS  PubMed  Google Scholar 

  • Maestrojuan GM, Boone DR (1991) Characterization of Methanosarcina-Barkeri Mst and 227, Methanosarcina-Mazei S-6t, and Methanosarcina-Vacuolata Z-761t. Int J Syst Bacteriol 41(2):267–274

    Article  Google Scholar 

  • Marteinsson VT, Birrien JL, Reysenbach AL, Vernet M, Marie D, Gambacorta A, Messner P, Sleytr UB, Prieur D (1999a) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 49(Pt 2):351–359. doi:10.1099/00207713-49-2-351

    Article  PubMed  Google Scholar 

  • Marteinsson VT, Reysenbach AL, Birrien JL, Prieur D (1999b) A stress protein is induced in the deep-sea barophilic hyperthermophile Thermococcus barophilus when grown under atmospheric pressure. Extremophiles 3(4):277–282

    Article  CAS  PubMed  Google Scholar 

  • Montalvo-Rodriguez R, Vreeland RH, Oren A, Kessel M, Betancourt C, Lopez-Garriga J (1998) Halogeometricum borinquense gen. nov., sp. nov., a novel halophilic archaeon from Puerto Rico. Int J Syst Bacteriol 48(Pt 4):1305–1312. doi:10.1099/00207713-48-4-1305

    Article  CAS  PubMed  Google Scholar 

  • Mullakhanbhai MF, Larsen H (1975) Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Arch Microbiol 104(3):207–214

    Article  CAS  PubMed  Google Scholar 

  • Okochi M, Matsuzaki H, Nomura T, Ishii N, Yohda M (2005) Molecular characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3. Extremophiles 9(2):127–134. doi:10.1007/s00792-004-0427-y

    Article  CAS  PubMed  Google Scholar 

  • Ollivier B, Cayol JL, Patel BK, Magot M, Fardeau ML, Garcia JL (1997) Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil-producing well. FEMS Microbiol Lett 147(1):51–56

    Article  CAS  PubMed  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63(2):334–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Oren A, Ginzburg M, Ginzburg BZ, Hochstein LI, Volcani BE (1990) Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea. Int J Syst Bacteriol 40(2):209–210. doi:10.1099/00207713-40-2-209

    Article  CAS  PubMed  Google Scholar 

  • Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100(1):5–24

    Article  CAS  PubMed  Google Scholar 

  • Roh SW, Nam YD, Chang HW, Sung Y, Kim KH, HM O, Bae JW (2007) Halalkalicoccus jeotgali sp. nov., a halophilic archaeon from shrimp jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 57(Pt 10):2296–2298. doi:10.1099/ijs.0.65121-0

    Article  CAS  PubMed  Google Scholar 

  • Ruggero D, Ciammaruconi A, Londei P (1998) The chaperonin of the archaeon Sulfolobus solfataricus is an RNA-binding protein that participates in ribosomal RNA processing. EMBO J 17(12):3471–3477. doi:10.1093/emboj/17.12.3471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sako Y, Nomura N, Uchida A, Ishida Y, Morii H, Koga Y, Hoaki T, Maruyama T (1996) Aeropyrum pernix gen nov, sp nov, a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 degrees C. Int J Syst Bacteriol 46(4):1070–1077

    Article  CAS  PubMed  Google Scholar 

  • Sekiguchi H, Nakagawa A, Moriya K, Makabe K, Ichiyanagi K, Nozawa S, Sato T, Adachi S, Kuwajima K, Yohda M, Sasaki YC (2013) ATP dependent rotational motion of group II chaperonin observed by X-ray single molecule tracking. PLoS One 8(5):e64176. doi:10.1371/journal.pone.0064176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sergeeva OA, Yang J, King JA, Knee KM (2014) Group II archaeal chaperonin recognition of partially folded human gammaD-crystallin mutants. Protein Sci 23(6):693–702. doi:10.1002/pro.2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an Acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47(5):971–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stetter KO (1996) Hyperthermophilic procaryotes. FEMS Microb Rev 18:149–158

    Article  CAS  Google Scholar 

  • Stetter KO, Lauerer G, Thomm M, Neuner A (1987) Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236(4803):822–824. doi:10.1126/science.236.4803.822

    Article  CAS  PubMed  Google Scholar 

  • Takai K, Inoue A, Horikoshi K (2002) Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. Int J Syst Evol Microbiol 52(Pt 4):1089–1095. doi:10.1099/00207713-52-4-1089

    CAS  PubMed  Google Scholar 

  • Tokuriki N, Tawfik DS (2009) Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459:668–673

    Article  CAS  PubMed  Google Scholar 

  • Vannier P, Michoud G, Oger P, Marteinsson V, Jebbar M (2015) Genome expression of Thermococcus barophilus and Thermococcus kodakarensis in response to different hydrostatic pressure conditions. Res Microbiol 166(9):717–725. doi:10.1016/j.resmic.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  • Volkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A, Stetter KO (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59(9):2918–2926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waino M, Tindall BJ, Ingvorsen K (2000) Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the archaea from great salt lake, Utah. Int J Syst Evol Microbiol 50(Pt 1):183–190. doi:10.1099/00207713-50-1-183

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Vadrevu R, Kathuria S, Yang X, Matthews CR (2007) A tightly packed hydrophobic cluster directs the formation of an off-pathway sub-millisecond folding intermediate in the alpha subunit of tryptophan synthase, a TIM barrel protein. J Mol Biol 366(5):1624–1638. doi:10.1016/j.jmb.2006.12.005

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Fujiwara S, Kohda K, Takagi M, Imanaka T (1997) In vitro stabilization and in vivo solubilization of foreign proteins by the beta subunit of a chaperonin from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1. Appl Environ Microbiol 63(2):785–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Ideno A, Hiyamuta S, Yohda M, Maruyama T (2001) Natural chaperonin of the hyperthermophilic archaeum, Thermococcus strain KS-1: a hetero-oligomeric chaperonin with variable subunit composition. Mol Microbiol 39(5):1406–1413

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Ideno A, Suzuki R, Yohda M, Maruyama T (2002) Two kinds of archaeal group II chaperonin subunits with different thermostability in Thermococcus strain KS-1. Mol Microbiol 44(3):761–769

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Kanzaki T, Iizuka R, Komada T, Zako T, Suzuki R, Maruyama T, Yohda M (2006) Contribution of the C-terminal region to the thermostability of the archaeal group II chaperonin from Thermococcus sp. strain KS-1. Extremophiles 10(5):451–459. doi:10.1007/s00792-006-0519-y

    Article  CAS  PubMed  Google Scholar 

  • Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109(2):707–715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Wang L, Liu Y, Chan KY, Pang X, Schulten K, Dong Z, Sun F (2013) Flexible interwoven termini determine the thermal stability of thermosomes. Protein Cell 4(6):432–444. doi:10.1007/s13238-013-3026-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Fujiwara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Gao, L., Fujiwara, S. (2017). Functional Distribution of Archaeal Chaperonins. In: Kumar, C., Mande, S. (eds) Prokaryotic Chaperonins. Heat Shock Proteins, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-10-4651-3_8

Download citation

Publish with us

Policies and ethics