Skip to main content

Analysis of Cross-Correlation Peak Distortion Caused by Antenna Array Space-Time Adaptive Processing

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC) 2017 Proceedings: Volume I (CSNC 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 437))

Included in the following conference series:

Abstract

Space-time adaptive processing (STAP) combines information available from both spatial and temporal domains, which can effectively enhance the GNSS receivers’ performance of interference suppression. But STAP has the potential to distort cross-correlation peak, which would deteriorate acquisition and tracking performance. In this paper, the cross-correlation peak distortion under space-time power inversion (PI) criterion and minimum variance distortionless response (MVDR) criterion are analyzed by theoretical analysis and simulations. Analysis and simulation show that the spatial correlation coefficient between interference and desired signal, taps number of Tapped Delay Line (TDL) and taps delay can directly affect the cross-correlation peak. The conclusions can be used to optimize the antenna array design and space-time adaptive algorithm for reducing cross-correlation peak distortion caused by STAP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guoqiang Gan, Zhihe Qiu (2000) Navigation and position—the big dipper of modern war. National Defense Industry Press, Beijing (in Chinese)

    Google Scholar 

  2. Kaplan ED, Hegarty CJ (2006) Understanding GPS: principles and applications. 2nd edition, Artech House, Boston, p 80

    Google Scholar 

  3. Church CM (2009) Estimation of adaptive antenna induced phase biases in globe navigation satellite systems receiver measurements. Master thesis, Ohio State University, Ohio

    Google Scholar 

  4. Marathe T, Daneshmand S, Lachapelle G (2015) Characterizing signal distortion due to space-time processing of interference impacted GNSS signals. In: Proceedings of the 28th international technical meeting of the ION satellite division, p 3084–3093

    Google Scholar 

  5. O’Brien AJ, Gupta IJ (2011) Mitigation of adaptive antenna induced bias errors in GNSS receivers. IEEE Trans Aerosp Electron Syst 47:524–538

    Google Scholar 

  6. Daneshmand S, Jahromi AJ, Broumandan A, et al (2015) GNSS space-time interference mitigation and attitude determination in the presence of interference signals. Sensors 15:12180–12204

    Google Scholar 

  7. Gupta IJ, Church CM, O’Brien AJ, et al (2007) Prediction of antenna and antenna electronics induced biases in GNSS receivers. In: Proceedings of ION GNSS conference, p 650–656

    Google Scholar 

  8. Fante RL, Fitzgibbons MP, McDonald KF (2004) Effect of adaptive array processing on GPS signal crosscorrelation. In: Proceedings of the 17th international technical meeting of the satellite division of ION, p 579–583

    Google Scholar 

  9. Wenfei G, Jiansheng Z, Tisheng Z, et al (2011) Analysis method for satellite signal cross-correlation peak bias in space-time adaptive processing. Geomatics Info Sci Wuhan University 36:1077–1080 (in Chinese)

    Google Scholar 

  10. Marathe T, Daneshmand S, Lachapella G (2016) Assessment of measurement distortions in GNSS antenna array space-time processing. Int J Antennas and Propag, p 1–17

    Google Scholar 

  11. Feiqiang C, Junwei N, Baiyu L, et al (2015) Distortionless space-time adaptive processor for global navigation satellite system receiver. Electron Lett 51:2138–2139

    Google Scholar 

  12. Hengcheng L (1982) Spatial correlations in adaptive arrays. IEEE Trans Antenna Propag 30:212–223

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix A

Appendix A

The space-time correlation matrix of the input signal, \( \varvec{x^{\prime}}\left( t \right) \), can be written as

$$ \varvec{R}_{xx} = E\left[ {\varvec{x^{\prime}}\left( t \right)\left( {\varvec{x^{\prime}}\left( t \right)} \right)^{H} } \right] $$
(17)

In practice, interference power and noise power are much higher than the desired signal power, so the desired signal can be ignored in Eq. (17). Assuming the interference and the noise are not related. One gets

$$ \varvec{R}_{xx} = \varvec{R}_{jj} + \delta_{n}^{2} \varvec{I} $$
(18)

where \( \varvec{R}_{jj} \) is the space-time correlation matrix of interference, \( \delta_{n}^{2} \) denotes the noise variance, \( \varvec{I} \) is a \( MN \times MN \) unit matrix. Under narrowband assumption, the interference space-time correlation matrix can be written as

$$ \varvec{R}_{jj} = \varvec{R}_{J} \otimes \left( {\varvec{a}_{J} \varvec{a}_{J}^{H} } \right) $$
(19)

where \( \varvec{R}_{J} \) represents the temporal correlation matrix, \( \otimes \) denotes the Kronecker tensor product.

Because \( \varvec{R}_{J} \) is a Hermite matrix, its eigen value decomposition can be expressed as

$$ \varvec{R}_{J} = \sum\limits_{i = 1}^{M} {\lambda_{i} u_{i} u_{i}^{H} } \quad \quad \left( {i = 1,2, \cdots ,M} \right) $$
(20)

where \( \lambda_{i} \) is the eigen value, \( u_{i} \) is the corresponding eigen vector. \( \varvec{a}_{J} \varvec{a}_{J}^{H} \) is also a Hermite matrix with only one nonzero eigen value which is \( N \). According to the property of Hermite matrix, the nonzero eigen values of \( \varvec{R}_{jj} \) are \( N\lambda_{i} \) and the corresponding eigen vectors are \( \varvec{\xi}_{i} = \varvec{u}_{i} \otimes \frac{{\varvec{a}_{J} }}{\sqrt N },\left( {i = 1,2, \cdots ,M} \right) \). According to Schmidt orthogonalization, the eigen vectors \( \varvec{\xi}_{i} = \varvec{u}_{i} \otimes \frac{{\varvec{a}_{J} }}{\sqrt N },\left( {i = 1,2, \cdots ,M} \right) \) can be extended to \( MN \) standard orthogonal eigen vectors. Hence, the eigen value decomposition of \( \varvec{R}_{xx} \) can be written as

$$ \begin{aligned} \varvec{R}_{xx} & = \sum\limits_{i = 1}^{M} {N\lambda_{i} \left( {\varvec{\xi}_{i}\varvec{\xi}_{i}^{H} } \right)} + \delta_{n}^{2} \sum\limits_{i = 1}^{MN} {\left( {\varvec{\xi}_{i}\varvec{\xi}_{i}^{H} } \right)} \\ & = \sum\limits_{i = 1}^{M} {\left( {N\lambda_{i} + \delta_{n}^{2} } \right)\left( {\varvec{\xi}_{i}\varvec{\xi}_{i}^{H} } \right)} + \delta_{n}^{2} \sum\limits_{i = M + 1}^{MN} {\left( {\varvec{\xi}_{i}\varvec{\xi}_{i}^{H} } \right)} \\ \end{aligned} $$
(21)

The inverse of \( \varvec{R}_{xx} \) can be obtained as

$$ \begin{aligned} \varvec{R}_{xx}^{ - 1} & = \sum\limits_{i = 1}^{M} {\frac{1}{{N\lambda_{i} + \delta_{n}^{2} }}\left( {\varvec{\xi}_{i}\varvec{\xi}_{i}^{H} } \right)} + \frac{1}{{\delta_{n}^{2} }}\sum\limits_{i = M + 1}^{MN} {\left( {\varvec{\xi}_{i}\varvec{\xi}_{i}^{H} } \right)} \\ & = \frac{1}{{\delta_{n}^{2} }}\sum\limits_{i = 1}^{MN} {\left( {\varvec{\xi}_{i}\varvec{\xi}_{i}^{H} } \right)} - \frac{1}{{\delta_{n}^{2} }}\sum\limits_{i = 1}^{M} {\frac{{N\lambda_{i} }}{{N\lambda_{i} + \delta_{n}^{2} }}\left( {\varvec{\xi}_{i}\varvec{\xi}_{i}^{H} } \right)} \\ & = \frac{1}{{\delta_{n}^{2} }}\left[ {\varvec{I} - \sum\limits_{i = 1}^{M} {\frac{{\lambda_{i} }}{{N\lambda_{i} + \delta_{n}^{2} }}\left( {\varvec{u}_{i} \otimes \varvec{a}_{J} } \right)} \left( {\varvec{u}_{i} \otimes \varvec{a}_{J} } \right)^{H} } \right] \\ \end{aligned} $$
(22)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Dai, X., Nie, J., Li, B., Lu, Z., Ou, G. (2017). Analysis of Cross-Correlation Peak Distortion Caused by Antenna Array Space-Time Adaptive Processing. In: Sun, J., Liu, J., Yang, Y., Fan, S., Yu, W. (eds) China Satellite Navigation Conference (CSNC) 2017 Proceedings: Volume I. CSNC 2017. Lecture Notes in Electrical Engineering, vol 437. Springer, Singapore. https://doi.org/10.1007/978-981-10-4588-2_68

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4588-2_68

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4587-5

  • Online ISBN: 978-981-10-4588-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics