Skip to main content

Transient Heat Transfer Analysis in Insulated Pipe with Constant and Time-Dependent Heat Flux for Solar Convective Furnace

  • Conference paper
  • First Online:
Concentrated Solar Thermal Energy Technologies

Part of the book series: Springer Proceedings in Energy ((SPE))

Abstract

The paper deals with heat transfer during the transportation of the hot air from receiver via an insulated pipe to solar convective furnace for metal processing. In the developed concept of solar convective furnace (SCF) hot air at a temperature of 300–600 °C is required for a duration of about 3–6 h. However, the availability of solar irradiance is 8–10 h per day, whereas, the typical required time for achieving the steady condition is in the order of hours. Thus, prediction of time-dependent air temperature development at the outlet of insulated pipe is required for a given flow condition. Considering these aspects, the developed and validated transient heat transfer analysis tool is used to analyze effect of (a) pipe length and thickness of insulation, (b) mass-flow-rate of air, (c) constant and variable inlet air temperature and (d) preheating of pipe. Following are the broad observations based on the performed analysis: (i) time to reach steady state for the considered insulated pipe and the ratio of the heat loss to input reduces with increasing mass-flow-rate; (ii) increasing insulation thickness beyond critical thickness reduces the heat loss that results in a higher temperature at outlet. However, it increases the required time to reach the steady state condition; (iii) the achieved maximum temperature corresponding to a solar irradiance is forward shifted in time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A a :

Area of aperture (m2)

C :

Concentration factor

C pf :

Specific heat capacity of fluid (J/kg K)

C ps :

Specific heat capacity of pipe/absorber (J/kg K)

DNI:

Direct normal irradiance (W/m2)

E a :

Net energy available at inlet (MJ)

E ph :

Energy required for preheating the pipe (MJ)

E u :

Energy utilized (MJ)

h f :

Heat transfer coefficient for internal heat transfer in fluid (W/m2 K)

h ex :

Natural convective heat transfer coefficient (W/m2 K)

K i :

Thermal conductivity of insulation (W/mK)

K s :

Thermal conductivity of pipe (W/mK)

L c :

Thermal development length (m)

L s or L :

Length of pipe (solid domain) (m)

\(\dot{m}_{\text{f}}\) :

Mass flow rate (kg/s)

n th :

Efficiency of receiver

N uex,i :

Nusselt number for natural convection at top of insulation domain (radial boundary)

N uex,s :

Nusselt number for natural convection at axial boundary of solid domain

N z :

Number of divisions in axial direction of pipe

P rf :

Prandtl number of fluid

\(\dot{Q}_{\text{a}}\) :

Power available at the inlet of pipe (W)

\(\dot{Q}_{\text{cond}}\) :

Power conducted (W)

\(\dot{Q}_{\text{fts}}\) :

Power transferred from fluid to solid (W)

\(\dot{Q}_{{\text{Nat}.\text{Conv}}}\) :

Natural convective power losses from insulation surface (W)

\(\dot{Q}_{{\text{sti}}}\) :

Power transferred to insulation from solid domain (W)

r :

Radial direction of pipe

Ra :

Rayleigh number

Re :

Reynolds number

r i :

Outer radius of insulation (m)

r s :

Inner radius of pipe (m)

SST:

Time to reach steady state (s)

T :

Time axis

T a :

Ambient temperature (K)

t h :

Time (h)

T i :

Temperature of insulation (K)

T m :

Mean temperature of fluid (K)

T m,in :

Mean temp of fluid at inlet of pipe (K)

T m,out :

Mean temp of fluid at outlet of pipe (K)

T m,out|steady state :

Mean temp of fluid at outlet at steady state (K)

T ph :

Preheat temp of pipe (K)

T s :

Temperature of pipe (K)

t op :

Total time of operation of the system (s)

\({{T_m}_{{i}} ^{n}}\) :

Mean temp of fluid at ith node and nth time step (K)

\({{T_s}_{{i}}^{n}}\) :

Temperature of solid domain at ith node and nth time step (K)

\({{T_{i}}_{i}^{n}}\) :

Temperature of insulation at ith node and nth time step (K)

z :

Axial direction of pipe

\(\alpha_{\text{i}}\) :

Thermal diffusivity of fluid domain (m2/s)

\(\alpha_{\text{s}}\) :

Thermal diffusivity of solid domain (m2/s)

\(\delta_{\text{i}}\) :

Thickness of insulation (m)

\(\delta_{\text{s}}\) :

Thickness of pipe (m)

\(\Delta{{r}}\) :

Grid spacing in radial direction (m)

\(\Delta {{z}}\) :

Finite difference element in axial direction (m)

\(\oslash\) :

Porosity of absorber

\(\rho_{\text{s}}\) :

Density of pipe (kg/m3)

\(\Delta {{z}}\) :

Grid spacing in axial direction (m)

\(\Delta t\) :

Time step (s)

MFR:

Mass flow rate

OVAR:

Open volumetric air receiver

VNS:

Von Neumann stability

Num:

Numerical

POA:

Power on aperture (W)

DNI:

Direct normal irradiance (W/m2)

Exp:

Experiment

References

  1. D. Patidar, S. Tiwari, P. Sharma, L. Chandra, R. Shekhar, Open volumetric air receiver based solar convective aluminum heat treatment furnace system. Energy Proc. 69, 506–517 (2015)

    Article  Google Scholar 

  2. D. Patidar, S. Tiwari, P. Sharma, R. Pardeshi, L. Chandra, R. Shekhar, Solar convective furnace for metals processing. JOM, 9 (2015). https://dx.doi.org/10.1007/s11837-015-1633-z

  3. B. Hoffschmidt, F.M. Téllez, A. Valverde, J. Fernández, V. Fernández, Performance evaluation of the 200-kWth HiTRec-II open volumetric air receiver. J. Sol. Energy Eng. 125, 87–94 (2003)

    Article  Google Scholar 

  4. P. Sharma, R. Sarma, L. Chandra, R. Shekhar, P.S. Ghoshdastidar, Solar tower based aluminum heat treatment system: Part I. Design and evaluation of an open volumetric air receiver. Sol. Energy 111, 135–150 (2015)

    Article  Google Scholar 

  5. P. Sharma, R. Sarma, L. Chandra, R. Shekhar, P.S. Ghoshdastidar, On the design and evaluation of open volumetric air receiver for process heat applications. Sol. Energy 121, 41–55 (2015)

    Article  Google Scholar 

  6. L.L. Vasiliev, Heat pipes in modern heat exchangers. Appl. Therm. Eng. 25, 1–19 (2005)

    Article  MathSciNet  Google Scholar 

  7. J. Legierski, W. Bosuslaw, G. de May, Measurements and simulations of transient characteristics of heat pipes. J. Microelectron. Reliab. 46, 109–115 (2006)

    Article  Google Scholar 

  8. M. Sachdeva, D. Saini, L. Chandra, An experimentally validated numerical tool for unsteady heat transfer analysis in a porous absorber and in an insulated pipe of solar convective furnace system. Int. J. Therm. Sci. (under review-2016)

    Google Scholar 

  9. Y.A. Cengel, Heat and Mass Transfer, 4th edn. (McGraw Hill Company, New York, 2011)

    Google Scholar 

  10. F.P. Incropera, D.P. DeWitt, Introduction to Heat Transfer, 3rd edn. (Wiley, New York, 1996), pp. 93–99

    Google Scholar 

  11. S. Dugaria, A. Padovan, V. Sabatelli, D.D. Col, Assessment of estimation methods of DNI resource in solar concentrating systems. Sol. Energy 121, 103–115 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Sachdeva .

Editor information

Editors and Affiliations

Appendix

Appendix

Equations (20), (21) and (22) represents the discretized form of the equations in fluid, solid and insulation domains and Eqs. (23) and (24) represents the discretized equations in solid and insulation domain respectively.

$$T_{{{\text{m}}_{i} }}^{n + 1} = T_{{{\text{m}}_{i} }}^{n} (1 - \left( {\left( {b + 1} \right)/c} \right) + T_{{{\text{s}}_{i} }}^{n} \left( {b/c} \right) + T_{{{\text{m}}_{i} }}^{n - 1} /\left( c \right)$$
(20)
$$T_{{{\text{s}}_{i} }}^{n + 1} = T_{{{\text{s}}_{i} }}^{n} *C\left( 3 \right) + T_{{{\text{s}}_{i + 1} }}^{n} *\tau_{\text{s}} + T_{{{\text{s}}_{i - 1} }}^{n} *\tau_{\text{s}} + T_{{{\text{m}}_{i} }}^{n} *C\left( 1 \right) + T_{{{\text{i}}_{i,j = 2} }}^{n} *C\left( 2 \right)$$
(21)
$$T_{ii,j}^{n + 1} = T_{ii,j}^{n} *g\left( 2 \right) + T_{ii,j - 1}^{n} *\tau_{i} + T_{ii,j + 1}^{n} *g\left( 3 \right)$$
(22)
$$T_{{{\text{s}}_{i} }}^{n + 1} = T_{{{\text{s}}_{i} }}^{n} *D\left( 4 \right) + T_{{{\text{s}}_{i + 1} }}^{n} *\tau_{\text{s}} + T_{{{\text{s}}_{i - 1} }}^{n} *\tau_{\text{s}} + T_{{{\text{m}}_{i} }}^{n} *D\left( 1 \right) + T_{{{\text{i}}_{{_{i} ,j = 2}} }}^{n} *D\left( 2 \right) + D\left( 3 \right) *T_{\text{a}}$$
(23)
$$T_{{{\text{i}}_{{i,{\text{Nz}}}} }}^{n + 1} = T_{{{\text{i}}_{{i,{\text{Nz}}}} }}^{n} *e\left( 3 \right) + T_{{{\text{i}}_{{i,{\text{Nz}} - 1}} }}^{n} *2\tau_{\text{i}} + T_{\text{a}} *e\left( 2 \right)$$
(24)

where

$$\begin{aligned} b & = \left( {\frac{{2\pi r_{\text{s}} h_{\text{f}} \Delta z}}{{m_{\text{f}} c_{\text{pf}} }}} \right),{\text{c}} = \left( {\frac{{\uprho_{\text{f}} \pi r_{\text{s}}^{2} \Delta {\text{z}}}}{{m_{\text{f}} \Delta t}}} \right), \alpha_{\text{s}} = \frac{{\rho_{\text{s}} C_{\text{ps}} }}{{K_{\text{s}} }},\tau_{\text{s}} = \frac{{\left( {\Delta z} \right)^{2} }}{{\alpha_{\text{s}} \Delta t}},C\left( 1 \right) \\ & = \frac{{h_{\text{f}} \tau_{\text{s}} \left( {\Delta z} \right)^{2} }}{{K_{\text{s}} \delta_{\text{s}} }} ,C\left( 2 \right) = \frac{{K_{\text{i}} \tau_{\text{s}} \left( {\Delta z} \right)^{2} }}{{K_{\text{s}} \delta_{\text{s}} \left( {\Delta r} \right)}},e\left( 1 \right) = \frac{{2\left( {\Delta r} \right)^{2} \tau_{\text{i}} }}{{K_{\text{i}} r_{\text{i}} }},C\left( 3 \right) \\ & = 1 - 2\tau_{\text{s}} - C\left( 1 \right) - C\left( 2 \right), D\left( 1 \right) = \frac{{h_{\text{f}} \tau_{\text{s}} \left( {\Delta z} \right)^{2} }}{{K_{\text{s}} \delta_{\text{s}} }}, D\left( 2 \right) \\ & = \frac{{K_{\text{i}} \tau_{\text{s}} \left( {\Delta z} \right)^{2} }}{{K_{\text{s}} \delta_{\text{s}} \left( {\Delta r} \right)}}, e\left( 2 \right) = h_{\text{ex}} *e\left( 1 \right),D\left( 3 \right) = \frac{{2\tau_{\text{s}} h_{\text{ex}} \left( {\Delta z} \right)}}{{K_{\text{s}} \delta_{\text{s}} }}, D\left( 4 \right) \\ & = 1 - 2\tau_{\text{s}} - D\left( 1 \right) - D\left( 2 \right) - D\left( 3 \right), \tau_{\text{i}} = \frac{{\left( {\Delta r} \right)^{2} }}{{\alpha_{\text{i}} \Delta t}}, e\left( 3 \right) \\ & = 1 - 2\tau_{\text{i}} \frac{\Delta r}{{r_{\text{i}} }} - \frac{{2\Delta r\tau_{\text{i}} h_{\text{ex}} }}{{K_{\text{i}} }},g\left( 1 \right) = \frac{\Delta r}{r}, g\left( 2 \right) \\ & = 1 - 2\tau_{\text{i}} - g\left( 1 \right) *\tau_{\text{i}} ,g\left( 3 \right) = \left( {1 + g\left( 1 \right)} \right) *\tau_{\text{i}} \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Sachdeva, M., Chandra, L. (2018). Transient Heat Transfer Analysis in Insulated Pipe with Constant and Time-Dependent Heat Flux for Solar Convective Furnace. In: Chandra, L., Dixit, A. (eds) Concentrated Solar Thermal Energy Technologies. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-10-4576-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4576-9_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4575-2

  • Online ISBN: 978-981-10-4576-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics