Skip to main content

Heart Failure in Adults with Congenital Heart Disease

  • Chapter
  • First Online:
Adult Congenital Heart Disease
  • 886 Accesses

Abstract

The number of adults with congenital heart disease (ACHD), especially those with complex CHD, is increasing substantially. The major clinical characteristics include (1) a high prevalence of right-sided heart failure (HF) due to systolic and/or diastolic dysfunction of the right ventricle (RV), which is frequently seen in repaired patients with tetralogy of Fallot (TF); (2) pressure and/or volume overload to the ventricles due to intra- and/or extracardiac shunting, atrioventricular or semilunar valve stenosis, and/or regurgitation; and (3) a morphologic RV as a systemic ventricle seen in those with congenitally corrected transposition of the great arteries or in those after an atrial switch operation. In addition, some CHD-specific conditions are also included in these pathophysiologic conditions, such as cyanosis (hypoxia) in unrepaired patients with complex CHD, Eisenmenger syndrome, and single ventricular physiology, i.e., Fontan circulation. The impaired function of the noncardiac organs may also be involved in some ACHD patients. Furthermore, surgery-related issues, including perioperative myocardial damage and electrical pathophysiology, can modify and make the ACHD HF pathophysiology more complex. The application of an established anti-HF strategy used in non-ACHD patients with left-sided HF to ACHD patients is questionable and possibly limited efficacy. Although most of the ACHD HF pathophysiology appears progressive, and determining the optimal timing for surgical interventions, such as pulmonary valve replacement, is often difficult because some of those procedures are prophylactic. Thus, a comprehensive understanding of ACHD HF, including noncardiac issues, is required to manage ACHD CHF and anticipate a better long-term outcome in these patients. In this review, the common ACHD HF pathophysiology and major specific ACHD conditions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. The criteria committee of the New York Heart Association. Nomenclature and criteria for diagnosis of diseases of the heart and great vessels. 9th ed. Boston, MA: Little, Brown; 1994. p. 253–6.

    Google Scholar 

  2. Forrester JS, Diamond G, Chatterjee K, et al. Medical therapy of acute myocardial infarction by application of hemodynamic subsets (second of two parts). N Engl J Med. 1976;295:1404–13.

    Article  CAS  PubMed  Google Scholar 

  3. Nohria A, Tsang SW, Fang JC, et al. Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J Am Coll Cardiol. 2003;41:1797–804.

    Article  PubMed  Google Scholar 

  4. Mebazaa A, Gheorghiade M, Piña IL, et al. Practical recommendations for prehospital and early in-hospital management of patients presenting with acute heart failure syndromes. Crit Care Med. 2008;36 Suppl 1:S129–S139.

    Google Scholar 

  5. Budts W, Roos-Hesselink J, Rädle-Hurst T, et al. Treatment of heart failure in adult congenital heart disease: a position paper of the Working Group of Grown-Up Congenital Heart Disease and the Heart Failure Association of the European Society of Cardiology. Eur Heart J. 2016;37(18):1419–27. pii: ehv741.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stout KK, Broberg CS, Book WM, et al; American Heart Association Council on Clinical Cardiology, Council on Functional Genomics and Translational Biology, and Council on Cardiovascular Radiology and Imaging. Chronic heart failure in congenital heart disease: a scientific statement from the American Heart Association Circulation. 2016;133:770–801.

    Google Scholar 

  7. Olson TP, Snyder EM, Johnson BD. Exercise-disordered breathing in chronic heart failure. Exerc Sport Sci Rev. 2006;34:194–201.

    Article  PubMed  Google Scholar 

  8. Alonso-Gonzalez R, Borgia F, Diller GP, et al. Abnormal lung function in adults with congenital heart disease: prevalence, relation to cardiac anatomy, and association with survival. Circulation. 2013;127:882–90.

    Article  PubMed  Google Scholar 

  9. Ohuchi H, Takasugi H, Ohashi H, et al. Stratification of pediatric heart failure on the basis of neurohormonal and cardiac autonomic nervous activities in patients with congenital heart disease. Circulation. 2003;108:2368–76.

    Article  PubMed  Google Scholar 

  10. Chung ST, Hong B, Patterson L, Petit CJ, Ham JN. High overweight and obesity in Fontan patients: a 20-year history. Pediatr Cardiol. 2016;37:192–200.

    Article  PubMed  Google Scholar 

  11. Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med. 1999;341:577–85.

    Article  CAS  PubMed  Google Scholar 

  12. Floras JS. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol. 2009;54:375–85.

    Article  CAS  PubMed  Google Scholar 

  13. Narula J, Gerson M, Thomas GS, et al. 123I-MIBG imaging for prediction of mortality and potentially fatal events in heart failure: the ADMIRE-HFX study. J Nucl Med. 2015;56:1011–8.

    Article  PubMed  Google Scholar 

  14. Ohuchi H, Suzuki H, Toyohara K, et al. Abnormal cardiac autonomic nervous activity after right ventricular outflow tract reconstruction. Circulation. 2000;102:2732–8.

    Article  CAS  PubMed  Google Scholar 

  15. Kaseda S, Zipes DP. Supersensitivity to acetylcholine of canine sinus and AV nodes after parasympathetic denervation. Am J Phys. 1988;255:H534–9.

    CAS  Google Scholar 

  16. Ohuchi H, Watanabe K, Kishiki K, et al. Heart rate dynamics during and after exercise in postoperative congenital heart disease patients. Their relation to cardiac autonomic nervous activity and intrinsic sinus node dysfunction. Am Heart J. 2007;154:165–71.

    Article  PubMed  Google Scholar 

  17. Kondo C, Nakazawa M, Momma K, et al. Sympathetic denervation and reinnervation after arterial switch operation for complete transposition. Circulation. 1998;97:2414–9.

    Article  CAS  PubMed  Google Scholar 

  18. Ohuchi H, Hayama Y, Negishi J, et al. Heart failure with preserved right ventricular ejection fraction in postoperative adults with congenital heart disease. A subtype of severe right ventricular pathophysiology. Int J Cardiol. 2016;212:223–31.

    Google Scholar 

  19. Mizuno M, Ohuchi H, Kagisaki K, et al. Experience of decortication for restrictive hemodynamics in adults with congenital heart disease. Pediatr Int. 2014;56:630–3.

    Article  PubMed  Google Scholar 

  20. Ferraz Cavalcanti PE, Sá MP, Santos CA, et al. Pulmonary valve replacement after operative repair of tetralogy of Fallot: meta-analysis and meta-regression of 3,118 patients from 48 studies. J Am Coll Cardiol. 2013;62:2227–43.

    Article  PubMed  Google Scholar 

  21. Chowdhury UK, Sathia S, Ray R, et al. Histopathology of the right ventricular outflow tract and its relationship to clinical outcomes and arrhythmias in patients with tetralogy of Fallot. J Thorac Cardiovasc Surg. 2006;132:270–7.

    Article  PubMed  Google Scholar 

  22. Sugano A, Ishizu T, Nakamura A, et al. Cardiac resynchronization therapy in a patient with a failing systemic right ventricle. Can J Cardiol. 2015;31:819.e5–7.

    Google Scholar 

  23. Miyazaki A, Sakaguchi H, Kagisaki K, et al. Optimal pacing sites for cardiac resynchronization therapy for patients with a systemic right ventricle with or without a rudimentary left ventricle. Europace. 2016;18:100–12.

    Article  PubMed  Google Scholar 

  24. Gatzoulis MA, Clark AL, Cullen S, et al. Right ventricular diastolic function 15 to 35 years after repair of tetralogy of Fallot. Restrictive physiology predicts superior exercise performance. Circulation. 1995;91:1775–81.

    Article  CAS  PubMed  Google Scholar 

  25. Xu Z, Zhang M, Zhu L, et al. Elevated plasma B-type natriuretic peptide and C-reactive protein levels in children with restrictive right ventricular physiology following tetralogy of Fallot repair. Congenit Heart Dis. 2014;9:521–8.

    Article  PubMed  Google Scholar 

  26. Gatzoulis MA, Walters J, McLaughlin PR, et al. Late arrhythmia in adults with the mustard procedure for transposition of great arteries: a surrogate marker for right ventricular dysfunction? Heart. 2000;84:409–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Plymen CM, Hughes ML, Picaut N, et al. The relationship of systemic right ventricular function to ECG parameters and NT-proBNP levels in adults with transposition of the great arteries late after Senning or Mustard surgery. Heart. 2010;96:1569–73.

    Article  CAS  PubMed  Google Scholar 

  28. Ohuchi H, Miyazaki A, Wakisaka Y, et al. Systemic ventricular morphology-associated increased QRS duration compromises the ventricular mechano-electrical and energetic properties long-term after the Fontan operation. Int J Cardiol. 2009;133:371–80.

    Article  PubMed  Google Scholar 

  29. Egidy Assenza G, Valente AM, Geva T, et al. QRS duration and QRS fractionation on surface electrocardiogram are markers of right ventricular dysfunction and atrialization in patients with Ebstein anomaly. Eur Heart J. 2013;34:191–200.

    Article  CAS  PubMed  Google Scholar 

  30. Park SJ, Chung S, On YK, et al. Fragmented QRS complex in adult patients with Ebstein anomaly and its association with arrhythmic risk and the severity of the anomaly. Circ Arrhythm Electrophysiol. 2013;6:1148–55.

    Article  PubMed  Google Scholar 

  31. Niwa K, Perloff JK, Bhuta SM, et al. Structural abnormalities of great arterial walls in congenital heart disease: light and electron microscopic analyses. Circulation. 2001;103:393–400.

    Article  CAS  PubMed  Google Scholar 

  32. Seki M, Kuwata S, Kurishima C, et al. Report from the Japanese Society of Pediatric Cardiology and Cardiac Surgery Research Committee on Cardio-Vascular Function in Adult Patients with Congenital Heart Disease. Mechanism of aortic root dilation and cardio-vascular function in patients with tetralogy of Fallot. Pediatr Int. 2016;58(5):323–30. doi:10.1111/ped.12932. Epub ahead of print

    Article  CAS  PubMed  Google Scholar 

  33. Ohuchi H, Hayama Y, Negishi J, et al. Determinants of aortic size and stiffness and the impact on exercise physiology in patients after the Fontan operation. Int Heart J. 2017;58;73–80.

    Google Scholar 

  34. Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.

    Article  CAS  PubMed  Google Scholar 

  35. Ronco C, Haapio M, House AA, et al. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52:1527–39.

    Article  PubMed  Google Scholar 

  36. Dimopoulos K, Diller GP, Koltsida E, et al. Prevalence, predictors, and prognostic value of renal dysfunction in adults with congenital heart disease. Circulation. 2008;117:2320–8.

    Article  PubMed  Google Scholar 

  37. Ohuchi H, Ikado H, Noritake K, et al. Impact of central venous pressure on cardiorenal interactions in adult patients with congenital heart disease after biventricular repair. Congenit Heart Dis. 2013;8:103–10.

    Article  PubMed  Google Scholar 

  38. Müller J, Ewert P, Hager A. Increased aortic blood pressure augmentation in patients with congenital heart defects—A cross-sectional study in 1125 patients and 322 controls. Int J Cardiol. 2015;184:225–9.

    Article  PubMed  Google Scholar 

  39. Krishnan US, Taneja I, Gewitz M, et al. Peripheral vascular adaptation and orthostatic tolerance in Fontan physiology. Circulation. 2009;120:1775–83.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rehn TA, Munkvik M, Lunde PK, et al. Intrinsic skeletal muscle alterations in chronic heart failure patients: a disease-specific myopathy or a result of deconditioning? Heart Fail Rev. 2012;17:421–36.

    Article  CAS  PubMed  Google Scholar 

  41. Vaitkevicius PV, Fleg JL, Engel JH, et al. Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation. 1993;88(Pt 1):1456–62.

    Google Scholar 

  42. Bonapace S, Rossi A, Cicoira M, et al. Aortic distensibility independently affects exercise tolerance in patients with dilated cardiomyopathy. Circulation. 2003;107:1603–8.

    Article  PubMed  Google Scholar 

  43. Ohuchi H, Diller GP. Biomarkers in adult congenital heart disease heart failure. Heart Fail Clin. 2014;10:43–56.

    Article  PubMed  Google Scholar 

  44. Book WM, Hott BJ, McConnell M. B-type natriuretic peptide levels in adults with congenital heart disease and right ventricular failure. Am J Cardiol. 2005;95:545–6.

    Article  CAS  PubMed  Google Scholar 

  45. Giannakoulas G, Dimopoulos K, Bolger AP, et al. Usefulness of natriuretic peptide levels to predict mortality in adults with congenital heart disease. Am J Cardiol. 2010;105:869–73.

    Article  CAS  PubMed  Google Scholar 

  46. Nagaya N, Nishikimi T, Uematsu M, et al. Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation. 2000;102:865–70.

    Article  CAS  PubMed  Google Scholar 

  47. Diller GP, Alonso-Gonzalez R, Kempny A, et al. B-type natriuretic peptide concentrations in contemporary Eisenmenger syndrome patients: predictive value and response to disease targeting therapy. Heart. 2012;98:736–42.

    Article  CAS  PubMed  Google Scholar 

  48. Ohuchi H, Yasuda K, Miyazaki A, et al. Comparison of prognostic variables in children and adults with Fontan circulation. Int J Cardiol. 2014;173:277–83.

    Article  PubMed  Google Scholar 

  49. Inai K, Nakanishi T, Nakazawa M. Clinical correlation and prognostic predictive value of neurohumoral factors in patients late after the Fontan operation. Am Heart J. 2005;150:588–94.

    Article  PubMed  Google Scholar 

  50. Westhoff-Bleck M, Girke S, Breymann T, et al. Pulmonary valve replacement in chronic pulmonary regurgitation in adults with congenital heart disease: impact of preoperative QRS-duration and NT-proBNP levels on postoperative right ventricular function. Int J Cardiol. 2011;151:303–6.

    Article  PubMed  Google Scholar 

  51. Nagaya N, Nishikimi T, Okano Y, et al. Plasma brain natriuretic peptide levels increase in proportion to the extent of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol. 1998;31:202–8.

    Article  CAS  PubMed  Google Scholar 

  52. Cuypers JA, Menting ME, Konings EE, et al. Unnatural history of tetralogy of Fallot: prospective follow-up of 40 years after surgical correction. Circulation. 2014;130:1944–53.

    Article  PubMed  Google Scholar 

  53. Gatzoulis MA, Balaji S, Webber SA, et al. Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet. 2000;356:975–81.

    Article  CAS  PubMed  Google Scholar 

  54. Davlouros PA, Kilner PJ, Hornung TS, et al. Right ventricular function in adults with repaired tetralogy of Fallot assessed with cardiovascular magnetic resonance imaging: detrimental role of right ventricular outflow aneurysms or akinesia and adverse right-to-left ventricular interaction. J Am Coll Cardiol. 2002;40:2044–52.

    Article  PubMed  Google Scholar 

  55. Ghai A, Silversides C, Harris L, et al. Left ventricular dysfunction is a risk factor for sudden cardiac death in adults late after repair of tetralogy of Fallot. J Am Coll Cardiol. 2002;40:1675–80.

    Article  PubMed  Google Scholar 

  56. Nakazawa M, Shinohara T, Sasaki A, et al; Study Group for Arrhythmias Long-Term After Surgery for Congenital Heart Disease: ALTAS-CHD study. Arrhythmias late after repair of tetralogy of fallot: a Japanese multicenter study. Circ J. 2004;68:126–130.

    Google Scholar 

  57. Uebing A, Gibson DG, Babu-Narayan SV, et al. Right ventricular mechanics and QRS duration in patients with repaired tetralogy of Fallot: implications of infundibular disease. Circulation. 2007;116:1532–9.

    Article  PubMed  Google Scholar 

  58. Yoo BW, Kim JO, Kim YJ, et al. Impact of pressure load caused by right ventricular outflow tract obstruction on right ventricular volume overload in patients with repaired tetralogy of Fallot. J Thorac Cardiovasc Surg. 2012;143:1299–304.

    Article  PubMed  Google Scholar 

  59. Frigiola A, Hughes M, Turner M, et al. Physiological and phenotypic characteristics of late survivors of tetralogy of Fallot repair who are free from pulmonary valve replacement. Circulation. 2013;128:1861–8.

    Article  PubMed  Google Scholar 

  60. Babu-Narayan SV, Diller GP, Gheta RR, et al. Clinical outcomes of surgical pulmonary valve replacement after repair of tetralogy of Fallot and potential prognostic value of preoperative cardiopulmonary exercise testing. Circulation. 2014;129:18–27.

    Article  PubMed  Google Scholar 

  61. Harrild DM, Berul CI, Cecchin F, et al. Pulmonary valve replacement in tetralogy of Fallot: impact on survival and ventricular tachycardia. Circulation. 2009;119:445–51.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nath J, Foster E, Heidenreich PA. Impact of tricuspid regurgitation on long-term survival. J Am Coll Cardiol. 2004;43:405–9.

    Article  PubMed  Google Scholar 

  63. Kogon B, Mori M, Alsoufi B, Kanter K, Oster M. Leaving moderate tricuspid valve regurgitation alone at the time of pulmonary valve replacement: a worthwhile approach. Ann Thorac Surg. 2015;99:2117–22.

    Article  PubMed  Google Scholar 

  64. Lee W, Yoo SJ, Roche SL, et al. Determinants and functional impact of restrictive physiology after repair of tetralogy of Fallot: new insights from magnetic resonance imaging. Int J Cardiol. 2013;167:1347–53.

    Article  PubMed  Google Scholar 

  65. Aboulhosn JA, Lluri G, Gurvitz MZ, et al; Alliance for Adult Research in Congenital Cardiology (AARCC). Left and right ventricular diastolic function in adults with surgically repaired tetralogy of Fallot: a multi-institutional study. Can J Cardiol. 2013;29:866–872.

    Google Scholar 

  66. Broberg CS, Aboulhosn J, Mongeon FP, et al; Alliance for Adult Research in Congenital Cardiology (AARCC). Prevalence of left ventricular systolic dysfunction in adults with repaired tetralogy of Fallot. Am J Cardiol. 2011;107:1215–1220.

    Google Scholar 

  67. Khairy P, Harris L, Landzberg MJ, et al. Implantable cardioverter-defibrillators in tetralogy of Fallot. Circulation. 2008;117:363–70.

    Article  PubMed  Google Scholar 

  68. Kapel GF, Reichlin T, Wijnmaalen AP, et al. Re-entry using anatomically determined isthmuses: a curable ventricular tachycardia in repaired congenital heart disease. Circ Arrhythm Electrophysiol. 2015;8:102–9.

    Article  PubMed  Google Scholar 

  69. Diller GP, Kempny A, Liodakis E, et al. Left ventricular longitudinal function predicts life-threatening ventricular arrhythmia and death in adults with repaired tetralogy of Fallot. Circulation. 2012;125:2440–6.

    Article  PubMed  Google Scholar 

  70. Heng EL, Bolger AP, Kempny A, et al. Neurohormonal activation and its relation to outcomes late after repair of tetralogy of Fallot. Heart. 2015;101:447–54.

    Article  CAS  PubMed  Google Scholar 

  71. Giardini A, Specchia S, Tacy TA, et al. Usefulness of cardiopulmonary exercise to predict long-term prognosis in adults with repaired tetralogy of Fallot. Am J Cardiol. 2007;99:1462–7.

    Article  PubMed  Google Scholar 

  72. Kubuš P, Materna O, Tax P, et al. Successful permanent resynchronization for failing right ventricle after repair of tetralogy of Fallot. Circulation. 2014;130:e186–90.

    Article  PubMed  Google Scholar 

  73. Norozi K, Bahlmann J, Raab B, et al. A prospective, randomized, double-blind, placebo controlled trial of beta-blockade in patients who have undergone surgical correction of tetralogy of Fallot. Cardiol Young. 2007;17:372–9.

    Article  PubMed  Google Scholar 

  74. Babu-Narayan SV, Uebing A, Davlouros PA, et al. Randomised trial of ramipril in repaired tetralogy of Fallot and pulmonary regurgitation: the APPROPRIATE study (Ace inhibitors for Potential PRevention Of the deleterious effects of Pulmonary Regurgitation In Adults with repaired TEtralogy of Fallot). Int J Cardiol. 2012;154:299–305.

    Article  PubMed  Google Scholar 

  75. Thambo JB, De Guillebon M, Xhaet O, et al. Biventricular pacing in patients with Tetralogy of Fallot: non-invasive epicardial mapping and clinical impact. Int J Cardiol. 2013;163:170–4.

    Article  PubMed  Google Scholar 

  76. Vejlstrup N, Sørensen K, Mattsson E, et al. Long-term outcome of Mustard/Senning correction for transposition of the great arteries in Sweden and Denmark. Circulation. 2015;132:633–8.

    Article  PubMed  Google Scholar 

  77. Rydman R, Gatzoulis MA, Ho SY, et al. Circ Cardiovasc Imaging. 2015;8. pii: e002628.

    Google Scholar 

  78. Graham TP Jr, Bernard YD, Mellen BG, et al. Long-term outcome in congenitally corrected transposition of the great arteries: a multi-institutional study. J Am Coll Cardiol. 2000;36:255–61.

    Article  PubMed  Google Scholar 

  79. Lubiszewska B, Gosiewska E, Hoffman P, et al. Myocardial perfusion and function of the systemic right ventricle in patients after atrial switch procedure for complete transposition: long-term follow-up. J Am Coll Cardiol. 2000;36:1365–70.

    Article  CAS  PubMed  Google Scholar 

  80. Hornung TS, Bernard EJ, Jaeggi ET, et al. Myocardial perfusion defects and associated systemic ventricular dysfunction in congenitally corrected transposition of the great arteries. Heart. 1998;80:322–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fratz S, Hauser M, Bengel FM, et al. Myocardial scars determined by delayed-enhancement magnetic resonance imaging and positron emission tomography are not common in right ventricles with systemic function in long-term follow up. Heart. 2006;92:1673–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hauser M, Bengel FM, Hager A, et al. Impaired myocardial blood flow and coronary flow reserve of the anatomical right systemic ventricle in patients with congenitally corrected transposition of the great arteries. Heart. 2003;89:1231–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Neffke JG, Tulevski II, van der Wall EE, et al. ECG determinants in adult patients with chronic right ventricular pressure overload caused by congenital heart disease: relation with plasma neurohormones and MRI parameters. Heart. 2002;88:266–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Salehian O, Schwerzmann M, Merchant N, Webb GD, Siu SC, Therrien J. Assessment of systemic right ventricular function in patients with transposition of the great arteries using the myocardial performance index: comparison with cardiac magnetic resonance imaging. Circulation. 2004;110:3229–33.

    Article  PubMed  Google Scholar 

  85. Diller GP, Radojevic J, Kempny A, et al. Systemic right ventricular longitudinal strain is reduced in adults with transposition of the great arteries, relates to subpulmonary ventricular function, and predicts adverse clinical outcome. Am Heart J. 2012;163:859–66.

    Article  PubMed  Google Scholar 

  86. Chow PC, Cheung EW, Chong CY, et al. Brain natriuretic peptide as a biomarker of systemic right ventricular function in patients with transposition of great arteries after atrial switch operation. Int J Cardiol. 2008;127:192–7.

    Article  PubMed  Google Scholar 

  87. Koch AM, Zink S, Singer H. B-type natriuretic peptide in patients with systemic right ventricle. Cardiology. 2008;110(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  88. Haberger S, Hauser M, Braun SL, et al. Prognostic value of plasma B-Type natriuretic peptide in the long-term follow-up of patients with transposition of the great arteries with morphologic right systemic ventricle after atrial switch operation. Circ J. 2015;79:2677–81.

    Article  PubMed  Google Scholar 

  89. Helsen F, De Meester P, Van Keer J, et al. Pulmonary outflow obstruction protects against heart failure in adults with congenitally corrected transposition of the great arteries. Int J Cardiol. 2015;196:1–6.

    Article  PubMed  Google Scholar 

  90. Giardini A, Hager A, Lammers AE, et al. Ventilatory efficiency and aerobic capacity predict event-free survival in adults with atrial repair for complete transposition of the great arteries. J Am Coll Cardiol. 2009;53:1548–55.

    Article  PubMed  Google Scholar 

  91. Fredriksen PM, Chen A, Veldtman G, et al. Exercise capacity in adult patients with congenitally corrected transposition of the great arteries. Heart. 2001;85:191–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. van der Bom T, Winter MM, Groenink M, et al. Right ventricular end-diastolic volume combined with peak systolic blood pressure during exercise identifies patients at risk for complications in adults with a systemic right ventricle. J Am Coll Cardiol. 2013;62:926–36.

    Article  PubMed  Google Scholar 

  93. Shafer KM, Mann N, Hehn R, et al. Relationship between exercise parameters and noninvasive indices of right ventricular function in patients with biventricular circulation and systemic right ventricle. Congenit Heart Dis. 2015;10:457–65.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Winter MM, van der Plas MN, Bouma BJ, Groenink M, Bresser P, Mulder BJ. Mechanisms for cardiac output augmentation in patients with a systemic right ventricle. Int J Cardiol. 2010;143:141–6.

    Article  PubMed  Google Scholar 

  95. Oliver JM, Gallego P, Gonzalez AE, et al. Comparison of outcomes in adults with congenitally corrected transposition with situs inversus versus situs solitus. Am J Cardiol. 2012;110:1687–91.

    Article  PubMed  Google Scholar 

  96. van der Bom T, Winter MM, Bouma BJ, et al. Effect of valsartan on systemic right ventricular function: a double-blind, randomized, placebo-controlled pilot trial. Circulation. 2013;127:322–30.

    Article  PubMed  CAS  Google Scholar 

  97. Westhoff-Bleck M, Schieffer B, Tegtbur U, et al. Aerobic training in adults after atrial switch procedure for transposition of the great arteries improves exercise capacity without impairing systemic right ventricular function. Int J Cardiol. 2013;170:24–9.

    Article  PubMed  Google Scholar 

  98. Mongeon FP, Connolly HM, Dearani JA, et al. Congenitally corrected transposition of the great arteries ventricular function at the time of systemic atrioventricular valve replacement predicts long-term ventricular function. J Am Coll Cardiol. 2011;57:2008–17.

    Article  PubMed  Google Scholar 

  99. Scherptong RW, Vliegen HW, Winter MM, et al. Tricuspid valve surgery in adults with a dysfunctional systemic right ventricle: repair or replace? Circulation. 2009;119:1467–72.

    Article  PubMed  Google Scholar 

  100. d’Udekem Y, Iyengar AJ, Cochrane AD, et al. The Fontan procedure: contemporary techniques have improved long-term outcomes. Circulation. 2007;116:I157–64.

    PubMed  Google Scholar 

  101. Ohuchi H. Adult patients with Fontan circulation. What we know and how to manage adults with Fontan circulation. J Cardiol. 2016;68(3):181–9.

    Article  PubMed  Google Scholar 

  102. Bédard E, Lopez S, Perron J, et al. Life-threatening hemoptysis following the Fontan procedure. Can J Cardiol. 2008;24:145–7.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Vyas H, Driscoll DJ, Cetta F, et al. Gastrointestinal bleeding and protein-losing enteropathy after the Fontan operation. Am J Cardiol. 2006;98:666–7.

    Article  PubMed  Google Scholar 

  104. Ohuchi H, Yasuda K, Miyazaki A, et al. Prevalence and predictors of haemostatic complications in 412 Fontan patients: their relation to anticoagulation and haemodynamics. Eur J Cardiothorac Surg. 2015;47:511–9.

    Article  PubMed  Google Scholar 

  105. Earing MG, Cetta F, Driscoll DJ, et al. Long-term results of the Fontan operation for double-inlet left ventricle. Am J Cardiol. 2005;96:291–8.

    Article  PubMed  Google Scholar 

  106. Ono M, Boethig D, Goerler H, et al. Clinical outcome of patients 20 years after Fontan operation—effect of fenestration on late morbidity. Eur J Cardiothorac Surg. 2006;30:923–9.

    Article  PubMed  Google Scholar 

  107. Khairy P, Fernandes SM, Mayer JE Jr, et al. Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation. 2008;117:85–92.

    Article  PubMed  Google Scholar 

  108. Ohuchi H, Negishi J, Miyake A, et al. Long-term prognostic value of cardiac autonomic nervous activity in postoperative patients with congenital heart disease. Int J Cardiol. 2011;151:296–302.

    Article  PubMed  Google Scholar 

  109. Ohuchi H, Negishi J, Hayama Y, et al. Hyperuricemia reflects global Fontan pathophysiology and associates with morbidity and mortality in patients after the Fontan operation. Int J Cardiol. 2015;184:623–30.

    Article  PubMed  Google Scholar 

  110. Harrison DA, Liu P, Walters JE, et al. Cardiopulmonary function in adult patients late after Fontan repair. J Am Coll Cardiol. 1995;26:1016–21.

    Article  CAS  PubMed  Google Scholar 

  111. Ohuchi H, Negishi J, Noritake K, et al. Prognostic value of exercise variables in 335 patients after the Fontan operation: a 23-year single-center experience of cardiopulmonary exercise testing. Congenit Heart Dis. 2015;10:105–16.

    Article  PubMed  Google Scholar 

  112. Diller GP, Giardini A, Dimopoulos K, et al. Predictors of morbidity and mortality in contemporary Fontan patients: results from a multicenter study including cardiopulmonary exercise testing in 321 patients. Eur Heart J. 2010;31:3073–83.

    Article  PubMed  Google Scholar 

  113. Rathod RH, Prakash A, Kim YY, et al. Cardiac magnetic resonance parameters predict transplantation-free survival in patients with Fontan circulation. Circ Cardiovasc Imaging. 2014;7:502–9.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ohuchi H, Miyazaki A, Watanabe T, et al. Hemodynamic deterioration during simulated supraventricular tachycardia in patients after the Fontan operation. Int J Cardiol. 2007;117:381–7.

    Article  PubMed  Google Scholar 

  115. Tomkiewicz-Pajak L, Dziedzic-Oleksy H, Pajak J, et al. Arterial stiffness in adult patients after Fontan procedure. Cardiovasc Ultrasound. 2014;12:15.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Jin SM, Noh CI, Bae EJ, et al. Impaired vascular function in patients with Fontan circulation. Int J Cardiol. 2007;120:221–6.

    Article  PubMed  Google Scholar 

  117. Inai K, Saita Y, Takeda S, et al. Skeletal muscle hemodynamics and endothelial function in patients after Fontan operation. Am J Cardiol. 2004;93:792–7.

    Article  PubMed  Google Scholar 

  118. Khambadkone S, Li J, de Leval MR, et al. Basal pulmonary vascular resistance and nitric oxide responsiveness late after Fontan-type operation. Circulation. 2003;107:3204–8.

    Article  CAS  PubMed  Google Scholar 

  119. Ahmed A, Husain A, Love TE, et al. Heart failure, chronic diuretic use, and increase in mortality and hospitalization: an observational study using propensity score methods. Eur Heart J. 2006;27:1431–9.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hsu DT, Zak V, Mahony L, et al; Pediatric Heart Network Investigators. Enalapril in infants with single ventricle: results of a multicenter randomized trial. Circulation. 2010;122:333–340.

    Google Scholar 

  121. Kouatli AA, Garcia JA, Zellers TM, et al. Enalapril does not enhance exercise capacity in patients after Fontan procedure. Circulation. 1997;96:1507–12.

    Article  CAS  PubMed  Google Scholar 

  122. Ohuchi H, Hasegawa S, Yasuda K, et al. Severely impaired cardiac autonomic nervous activity after the Fontan operation. Circulation. 2001;104:1513–8.

    Article  CAS  PubMed  Google Scholar 

  123. Ishibashi N, Park IS, Waragai T, et al. Effect of carvedilol on heart failure in patients with a functionally univentricular heart. Circ J. 2011;75:1394–9.

    Article  CAS  PubMed  Google Scholar 

  124. Goldberg DJ, French B, McBride MG, et al. Impact of oral sildenafil on exercise performance in children and young adults after the Fontan operation: a randomized, double-blind, placebo-controlled, crossover trial. Circulation. 2011;123:1185–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sabri MR, Zolfi-Gol A, Ahmadi A, et al. Effect of tadalafil on myocardial and endothelial function and exercise performance after modified Fontan operation. Pediatr Cardiol. 2016;37:55–61.

    Article  PubMed  Google Scholar 

  126. Van De Bruaene A, La Gerche A, Claessen G, et al. Sildenafil improves exercise hemodynamics in Fontan patients. Circ Cardiovasc Imaging. 2014;7:265–73.

    Article  Google Scholar 

  127. Butts RJ, Chowdhury SM, Baker GH, et al. Effect of sildenafil on pressure-volume loop measures of ventricular function in Fontan patients. Pediatr Cardiol. 2016;37:184–91.

    Article  PubMed  Google Scholar 

  128. Rhodes J, Ubeda-Tikkanen A, Clair M, et al. Effect of inhaled iloprost on the exercise function of Fontan patients: a demonstration of concept. Int J Cardiol. 2013;168:2435–40.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hebert A, Mikkelsen UR, Thilen U, et al. Bosentan improves exercise capacity in adolescents and adults after Fontan operation: the TEMPO (Treatment With Endothelin Receptor Antagonist in Fontan Patients, a Randomized, Placebo-Controlled, Double-Blind Study Measuring Peak Oxygen Consumption) study. Circulation. 2014;130:2021–30.

    Article  CAS  PubMed  Google Scholar 

  130. Ridderbos FJ, Wolff D, Timmer A, et al. Adverse pulmonary vascular remodeling in the Fontan circulation. J Heart Lung Transplant. 2015;34:404–13.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Ohuchi M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ohuchi, H. (2017). Heart Failure in Adults with Congenital Heart Disease. In: Masuda, M., Niwa, K. (eds) Adult Congenital Heart Disease. Springer, Singapore. https://doi.org/10.1007/978-981-10-4542-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4542-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4541-7

  • Online ISBN: 978-981-10-4542-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics