Skip to main content

Flow Cytometry in Microbiology: The Reason and the Need

  • Chapter
  • First Online:
Single Cell Analysis

Abstract

The diagnosis of infection is based on methodologies that are, even in the 21st century, based on the study of the ability of microorganisms to grow in the presence of different substrates in the case of identification or in the presence of different antimicrobial drugs in the case of susceptibility evaluation. Despite the use of revolutionary techniques like molecular biology and more recently mass spectrometry, a lot of effort needs to be made to speed the results and to understand what happens to cells as individuals and not just as populations. Flow cytometry is an excellent tool still unexplored in microbiology; several applications are here described in the hope of contributing to the real use of flow cytometry in the clinical lab and to inspire future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Personal Communication.

References

  1. Gucker Jr. FT, O’Konski CT et al (1947) A photoelectronic counter for colloidal particles. J Am Chem Soc 69(10):2422–2431

    Google Scholar 

  2. Lloyd D (1993) Flow cytometry in microbiology, 1st edn. Springer, London

    Book  Google Scholar 

  3. Alvarez-Barrientos A et al (2000) Applications of flow cytometry to clinical microbiology. Clin Microbiol Rev 13(2):167–195

    Article  Google Scholar 

  4. Betz JW, Aretz W, Hartel W (1984) Use of flow cytometry in industrial microbiology for strain improvement programs. Cytometry 5(2):145–150

    Article  Google Scholar 

  5. Jansson JK, Prosser JI (1997) Quantification of the presence and activity of specific microorganisms in nature. Mol Biotechnol 7(2):103–120

    Article  Google Scholar 

  6. Shapiro HM (1995) Practical flow cytometry, 3rd edn. Wiley-Liss

    Google Scholar 

  7. Barbosa J et al (2010) A new method for the detection of Pneumocystis jirovecii using flow cytometry. Eur J Clin Microbiol Infect Dis 29(9):1147–1152

    Article  Google Scholar 

  8. Barbosa J, Rodrigues AG, Pina-Vaz C (2009) Cytometric approach for detection of Encephalitozoon intestinalis, an emergent agent. Clin Vaccine Immunol 16(7):1021–1024

    Article  Google Scholar 

  9. Barbosa J et al (2008) Optimization of a flow cytometry protocol for detection and viability assessment of Giardia lamblia. Travel Med Infect Dis 6(4):234–239

    Article  MathSciNet  Google Scholar 

  10. Faria-Ramos I et al (2012) Detection of Legionella pneumophila on clinical samples and susceptibility assessment by flow cytometry. Eur J Clin Microbiol Infect Dis 31(12):3351–3357

    Article  Google Scholar 

  11. Pina-Vaz C et al (2004) Novel method using a laser scanning cytometer for detection of Mycobacteria in clinical samples. J Clin Microbiol 42(2):906–908

    Article  Google Scholar 

  12. Pina-Vaz C, Rodrigues AG (2010) Evaluation of antifungal susceptibility using flow cytometry. Methods Mol Biol 638:281–289

    Article  Google Scholar 

  13. Pina-Vaz C et al (2005) Comparison of two probes for testing susceptibilities of pathogenic yeasts to voriconazole, itraconazole, and caspofungin by flow cytometry. J Clin Microbiol 43(9):4674–4679

    Article  Google Scholar 

  14. Pina-Vaz C et al (2001) Susceptibility to fluconazole of Candida clinical isolates determined by FUN-1 staining with flow cytometry and epifluorescence microscopy. J Med Microbiol 50(4):375–382

    Article  Google Scholar 

  15. Pina-Vaz C et al (2001) Cytometric approach for a rapid evaluation of susceptibility of Candida strains to antifungals. Clin Microbiol Infect 7(11):609–618

    Article  Google Scholar 

  16. Pina-Vaz C, Costa-de-Oliveira S, Rodrigues AG (2005) Safe susceptibility testing of Mycobacterium tuberculosis by flow cytometry with the fluorescent nucleic acid stain SYTO 16. J Med Microbiol 54(Pt 1):77–81

    Article  Google Scholar 

  17. Bownds SE et al (1996) Rapid susceptibility testing for nontuberculosis Mycobacteria using flow cytometry. J Clin Microbiol 34(6):1386–1390

    Google Scholar 

  18. Teixeira-Santos R et al (2012) Novel method for evaluating in vitro activity of anidulafungin in combination with amphotericin B or azoles. J Clin Microbiol 50(8):2748–2754

    Article  Google Scholar 

  19. Teixeira-Santos R et al (2015) New insights regarding yeast survival following exposure to liposomal amphotericin B. Antimicrob Agents Chemother 59(10):6181–6187

    Article  Google Scholar 

  20. Pina-Vaz C et al (2000) Antifungal activity of ibuprofen alone and in combination with fluconazole against Candida species. J Med Microbiol 49(9):831–840

    Article  Google Scholar 

  21. Pina-Vaz C et al (2005) Potent synergic effect between ibuprofen and azoles on Candida resulting from blockade of efflux pumps as determined by FUN-1 staining and flow cytometry. J Antimicrob Chemother 56(4):678–685

    Article  Google Scholar 

  22. Pina-Vaz C et al (2000) Antifungal activity of local anesthetics against Candida species. Infect Dis Obstet Gynecol 8(3–4):124–137

    Google Scholar 

  23. Pina-Vaz C et al (2016) A flow cytometric and computational approaches to carbapenems affinity to the different types of carbapenemases. Front Microbiol 7:1259

    Article  Google Scholar 

  24. Pina-Vaz C et al (2004) Antifungal activity of Thymus oils and their major compounds. J Eur Acad Dermatol Venereol 18(1):73–78

    Article  Google Scholar 

  25. Pinto E et al (2006) Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. J Med Microbiol 55(Pt 10):1367–1373

    Article  Google Scholar 

  26. Costa-de-Oliveira S et al (2008) Propofol lipidic infusion promotes resistance to antifungals by reducing drug input into the fungal cell. BMC Microbiol 8:9

    Article  Google Scholar 

  27. Testing, E.C.O.A.S (2013) EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance (version 1.0)

    Google Scholar 

  28. Faria-Ramos I et al (2013) A novel flow cytometric assay for rapid detection of extended-spectrum beta-lactamases. Clin Microbiol Infect 19(1):E8–E15

    Article  Google Scholar 

  29. Silva AP et al (2016) Rapid flow cytometry test for identification of different carbapenemases in Enterobacteriaceae. Antimicrob Agents Chemother 60(6):3824–3826

    Article  Google Scholar 

  30. Pinto-Silva A, Da S, Teixeira-Santos R, Costa de-Oliveira S, Rodrigues AG, Pina-Vaz C (2016) Determination of vancomycin susceptibility for Staphylococcus aureus by flow cytometry. ASM Microbe. Boston, USA

    Google Scholar 

  31. Ricardo E et al (2009) Ibuprofen reverts antifungal resistance on Candida albicans showing overexpression of CDR genes. FEMS Yeast Res 9(4):618–625

    Article  Google Scholar 

  32. Suller MT, Lloyd D (1998) Flow cytometric assessment of the postantibiotic effect of methicillin on Staphylococcus aureus. Antimicrob Agents Chemother 42(5):1195–1199

    Google Scholar 

  33. Silva-Dias A et al (2012) A novel flow cytometric protocol for assessment of yeast cell adhesion. Cytometry A 81(3):265–270

    Article  Google Scholar 

  34. Munro CA (2013) Chitin and glucan, the yin and yang of the fungal cell wall, implications for antifungal drug discovery and therapy. Adv Appl Microbiol 83:145–172

    Article  Google Scholar 

  35. Costa-de-Oliveira S et al (2013) Determination of chitin content in fungal cell wall: an alternative flow cytometric method. Cytometry A 83(3):324–328

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cidália Pina-Vaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Pina-Vaz, C., Costa-de-Oliveira, S., Silva-Dias, A., Silva, A.P., Teixeira-Santos, R., Rodrigues, A.G. (2017). Flow Cytometry in Microbiology: The Reason and the Need. In: Robinson, J., Cossarizza, A. (eds) Single Cell Analysis. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-4499-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4499-1_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4498-4

  • Online ISBN: 978-981-10-4499-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics