Skip to main content

Exercise Exerts Its Beneficial Effects on Acute Coronary Syndrome: Clinical Evidence

  • Chapter
  • First Online:
Exercise for Cardiovascular Disease Prevention and Treatment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1000))

Abstract

Acute coronary syndrome (ACS) is characterized with high morbidity, high mortality, long hospitalization and frequent revisits. It has been the most serious coronary artery diseases in the world. A large body of clinical evidence demonstrates that exercise is associated with reduced cardiovascular disease risk. In addition, different types of exercise have become the central to most cardiac rehabilitation/risk reduction programs. However, the detailed effects of exercise in ACS is still unclear and there is still lack of evidence on which exercise regimen may be ideal for ACS. This chapter presents a brief review of the pathophysiology of ACS and the relationship between exercise and the cardiovascular system. Besides that, this chapter also provide an updated discussion of the most relevant discoveries regarding to exercise and its role in managing ACS in clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ades PA (2001) Cardiac rehabilitation and secondary prevention of coronary heart disease. N Engl J Med 345(12):892–902

    Article  CAS  PubMed  Google Scholar 

  2. Alhaddad IA, Hakim I, Siddiqi F et al (1998) Early exercise after experimental myocardial infarction: effect on left ventricular remodeling. Coron Artery Dis 9(6):319–327

    Article  CAS  PubMed  Google Scholar 

  3. Marks R, Allegrante JP, Lorig K (2005) A review and synthesis of research evidence for self-efficacy-enhancing interventions for reducing chronic disability: implications for health education practice (part II). Health Promot Pract 6(2):148–156

    Article  PubMed  Google Scholar 

  4. Mozaffarian D, Benjamin EJ, Go AS et al (2015) Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation 131(4):e29–322

    Article  PubMed  Google Scholar 

  5. Dimeo FC, Thomas F, Raabe-Menssen C et al (2004) Effect of aerobic exercise and relaxation training on fatigue and physical performance of cancer patients after surgery. A randomised controlled trial. Support Care Cancer 12(11):774–779

    Article  PubMed  Google Scholar 

  6. Sullivan MD, LaCroix AZ, Russo JE et al (2001) Depression and self-reported physical health in patients with coronary disease: mediating and moderating factors. Psychosom Med 63(2):248–256

    Article  CAS  PubMed  Google Scholar 

  7. Redeker NS, Ruggiero JS, Hedges C (2004) Sleep is related to physical function and emotional well-being after cardiac surgery. Nurs Res 53(3):154–162

    Article  PubMed  Google Scholar 

  8. Kolansky DM (2009) Acute coronary syndromes: morbidity, mortality, and pharmacoeconomic burden. Am J Manag Care 15(2 Suppl):S36–S41

    PubMed  Google Scholar 

  9. Benjamin EJ, Blaha MJ, Chiuve SE et al (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603

    Article  PubMed  PubMed Central  Google Scholar 

  10. Writing Group M, Mozaffarian D, Benjamin EJ et al (2016) Executive summary: heart disease and stroke statistics–2016 update: a report from the American Heart Association. Circulation 133(4):447–454

    Article  Google Scholar 

  11. Krumholz HM, Wang Y, Chen J et al (2009) Reduction in acute myocardial infarction mortality in the United States: risk-standardized mortality rates from 1995-2006. JAMA 302(7):767–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rogers WJ, Canto JG, Lambrew CT et al (2000) Temporal trends in the treatment of over 1.5 million patients with myocardial infarction in the US from 1990 through 1999: the National Registry of myocardial infarction 1, 2 and 3. J Am Coll Cardiol 36(7):2056–2063

    Article  CAS  PubMed  Google Scholar 

  13. Lloyd-Jones D, Adams R, Carnethon M et al (2009) Heart disease and stroke statistics–2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119(3):480–486

    Article  PubMed  Google Scholar 

  14. Lloyd-Jones D, Adams R, Carnethon M et al (2009) Heart disease and stroke statistics–2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119(3):e21–181

    Article  PubMed  Google Scholar 

  15. Menzin J, Wygant G, Hauch O et al (2008) One-year costs of ischemic heart disease among patients with acute coronary syndromes: findings from a multi-employer claims database. Curr Med Res Opin 24(2):461–468

    Article  PubMed  Google Scholar 

  16. Zhao Z, Zhu Y, Fang Y et al (2015) Healthcare resource utilization and costs in working-age patients with high-risk atherosclerotic cardiovascular disease: findings from a multi-employer claims database. J Med Econ 18(9):655–665

    Article  CAS  PubMed  Google Scholar 

  17. Amsterdam EA, Wenger NK, Brindis RG et al (2014) 2014 AHA/ACC guideline for the Management of Patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation 130(25):e344–e246

    Article  PubMed  Google Scholar 

  18. Torres MMS (2007) Evaluation of the acutely dyspneic elderly patient. Clin Geriatr 23(2):307–325

    Article  Google Scholar 

  19. DuBois CM, Lopez OV, Beale EE et al (2015) Relationships between positive psychological constructs and health outcomes in patients with cardiovascular disease: a systematic review. Int J Cardiol 195:265–280

    Article  PubMed  PubMed Central  Google Scholar 

  20. Naranjo-Estupinan NF, Diaz-Quijano FA, Garcia RG (2012) The influence of cardiac rehabilitation on acute myocardial infarction patients’ readmission rate in Santander, Colombia. Rev Salud Publica (Bogota) 14(5):831–841

    Google Scholar 

  21. Thompson PD (2005) Exercise prescription and proscription for patients with coronary artery disease. Circulation 112(15):2354–2363

    Article  PubMed  Google Scholar 

  22. Dangardt FJ, McKenna WJ, Luscher TF et al (2013) Exercise: friend or foe? Nat Rev Cardiol 10(9):495–507

    Article  PubMed  Google Scholar 

  23. Lavie CJ, Menezes AR, De Schutter A et al (2016) Impact of cardiac rehabilitation and exercise training on psychological risk factors and subsequent prognosis in patients with cardiovascular disease. Can J Cardiol 32(10S2):S365–S373

    Article  PubMed  Google Scholar 

  24. Arena R, Guazzi M, Briggs PD et al (2013) Promoting health and wellness in the workplace: a unique opportunity to establish primary and extended secondary cardiovascular risk reduction programs. Mayo Clin Proc 88(6):605–617

    Article  PubMed  Google Scholar 

  25. European Association of Cardiovascular P, Rehabilitation Committee for Science, Eacpr G et al (2010) Secondary prevention through cardiac rehabilitation: physical activity counselling and exercise training: key components of the position paper from the cardiac rehabilitation section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur Heart J 31(16):1967–1974

    Article  Google Scholar 

  26. Garber CE, Blissmer B, Deschenes MR et al (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43(7):1334–1359

    Article  PubMed  Google Scholar 

  27. Hamer M, Ingle L, Carroll S et al (2012) Physical activity and cardiovascular mortality risk: possible protective mechanisms? Med Sci Sports Exerc 44(1):84–88

    Article  PubMed  Google Scholar 

  28. Clark AM, Hartling L, Vandermeer B et al (2005) Meta-analysis: secondary prevention programs for patients with coronary artery disease. Ann Intern Med 143(9):659–672

    Article  PubMed  Google Scholar 

  29. Gomes-Neto M, Conceicao CS, Oliveira Carvalho V et al (2013) A systematic review of the effects of different types of therapeutic exercise on physiologic and functional measurements in patients with HIV/AIDS. Clinics (Sao Paulo) 68(8):1157–1167

    Article  Google Scholar 

  30. Oldridge NB (1988) Cardiac rehabilitation exercise programme. Compliance and compliance-enhancing strategies. Sports Med 6(1):42–55

    Article  CAS  PubMed  Google Scholar 

  31. Kim C, Kim CH, Jee H et al (2014) Effects of exercise type on hemodynamic responses and cardiac events in ACS patients. J Phys Ther Sci 26(4):609–614

    Article  PubMed  PubMed Central  Google Scholar 

  32. Libby P, Theroux P (2005) Pathophysiology of coronary artery disease. Circulation 111(25):3481–3488

    Article  PubMed  Google Scholar 

  33. Naghavi M, Libby P, Falk E et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 108(14):1664–1672

    Article  PubMed  Google Scholar 

  34. Guo AQ, Sheng L, Lei X et al (2013) Pharmacological and physical prevention and treatment of no-reflow after primary percutaneous coronary intervention in ST-segment elevation myocardial infarction. J Int Med Res 41(3):537–547

    Article  CAS  PubMed  Google Scholar 

  35. De Maria GL, Cuculi F, Patel N et al (2015) How does coronary stent implantation impact on the status of the microcirculation during primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction? Eur Heart J 36(45):3165–3177

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stone GW, Webb J, Cox DA et al (2005) Distal microcirculatory protection during percutaneous coronary intervention in acute ST-segment elevation myocardial infarction: a randomized controlled trial. JAMA 293(9):1063–1072

    Article  CAS  PubMed  Google Scholar 

  37. Burke AP, Kolodgie FD, Farb A et al (2001) Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 103(7):934–940

    Article  CAS  PubMed  Google Scholar 

  38. Buffon A, Biasucci LM, Liuzzo G et al (2002) Widespread coronary inflammation in unstable angina. N Engl J Med 347(1):5–12

    Article  PubMed  Google Scholar 

  39. Stone GW, Maehara A, Lansky AJ et al (2011) A prospective natural-history study of coronary atherosclerosis. N Engl J Med 364(3):226–235

    Article  CAS  PubMed  Google Scholar 

  40. Libby P (2002) Inflammation in atherosclerosis. Nature 420(6917):868–874

    Article  CAS  PubMed  Google Scholar 

  41. Kuo LC, Bolli R, Thornby J et al (1987) Effects of exercise tolerance, age, and gender on the specificity of radionuclide angiography: sequential ejection fraction analysis during multistage exercise. Am Heart J 113(5):1180–1189

    Article  CAS  PubMed  Google Scholar 

  42. Manou-Stathopoulou V, Goodwin CD, Patterson T et al (2015) The effects of cold and exercise on the cardiovascular system. Heart 101(10):808–820

    Article  PubMed  Google Scholar 

  43. Longhurst JC, Stebbins CL (1997) The power athlete. Cardiol Clin 15(3):413–429

    Article  CAS  PubMed  Google Scholar 

  44. Gonzalez-Camarena R, Carrasco-Sosa S, Roman-Ramos R et al (2000) Effect of static and dynamic exercise on heart rate and blood pressure variabilities. Med Sci Sports Exerc 32(10):1719–1728

    Article  CAS  PubMed  Google Scholar 

  45. Jorgensen CR, Wang K, Wang Y et al (1973) Effect of propranolol on myocardial oxygen consumption and its hemodynamic correlates during upright exercise. Circulation 48(6):1173–1182

    Article  CAS  PubMed  Google Scholar 

  46. Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88(3):1009–1086

    Article  CAS  PubMed  Google Scholar 

  47. Nobrega AC, Williamson JW, Mitchell JH (1995) Left ventricular volumes and hemodynamic responses at onset of dynamic exercise with reduced venous return. J Appl Physiol (1985) 79(5):1405–1410

    Article  CAS  Google Scholar 

  48. Vella CA, Robergs RA (2005) A review of the stroke volume response to upright exercise in healthy subjects. Br J Sports Med 39(4):190–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Astrand PO, Cuddy TE, Saltin B et al (1964) Cardiac output during submaximal and maximal work. J Appl Physiol 19:268–274

    Article  CAS  PubMed  Google Scholar 

  50. Lind AR, McNicol GW (1967) Muscular factors which determine the cardiovascular responses to sustained and rhythmic exercise. Can Med Assoc J 96(12):706–715

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Barcroft H, Millen JL (1939) The blood flow through muscle during sustained contraction. J Physiol 97(1):17–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Koutnik AP, Figueroa A, Wong A et al (2014) Impact of acute whole-body cold exposure with concurrent isometric handgrip exercise on aortic pressure waveform characteristics. Eur J Appl Physiol 114(9):1779–1787

    Article  PubMed  Google Scholar 

  53. Martin CE, Shaver JA, Leon DF et al (1974) Autonomic mechanisms in hemodynamic responses to isometric exercise. J Clin Invest 54(1):104–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Muller MD, Gao Z, Drew RC et al (2011) Effect of cold air inhalation and isometric exercise on coronary blood flow and myocardial function in humans. J Appl Physiol (1985) 111(6):1694–1702

    Article  Google Scholar 

  55. Paulsen WJ, Boughner DR, Friesen A et al (1979) Ventricular response to isometric and isotonic exercise. Echocardiographic assessment. Br Heart J 42(5):521–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grossman W, McLaurin LP, Saltz SB et al (1973) Changes in the inotropic state of the left ventricle during isometric exercise. Br Heart J 35(7):697–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Goldring N, Wiles JD, Coleman D (2014) The effects of isometric wall squat exercise on heart rate and blood pressure in a normotensive population. J Sports Sci 32(2):129–136

    Article  PubMed  Google Scholar 

  58. Stefadouros MA, Grossman W, el-Shahawy M et al (1974) The effect of isometric exercise on the left ventricular volume in normal man. Circulation 49(6):1185–1189

    Article  CAS  PubMed  Google Scholar 

  59. Toska K (2010) Handgrip contraction induces a linear increase in arterial pressure by peripheral vasoconstriction, increased heart rate and a decrease in stroke volume. Acta Physiol (Oxf) 200(3):211–221

    Article  CAS  Google Scholar 

  60. Krauss AN, Levin AR, Grossman H et al (1970) Physiologic studies on infants with Wilson-Mikity syndrome. Ventilation-perfusion abnormalities and cardiac catheterization angiography. J Pediatr 77(1):27–36

    Article  CAS  PubMed  Google Scholar 

  61. Lind AR (1970) Cardiovascular responses to static exercise. (isometrics, anyone?). Circulation 41(2):173–176

    Article  CAS  PubMed  Google Scholar 

  62. Hirzel HO, Leutwyler R, Krayenbuehl HP (1985) Silent myocardial ischemia: hemodynamic changes during dynamic exercise in patients with proven coronary artery disease despite absence of angina pectoris. J Am Coll Cardiol 6(2):275–284

    Article  CAS  PubMed  Google Scholar 

  63. Kerber RE, Miller RA, Najjar SM (1975) Myocardial ischemic effects of isometric, dynamic and combined exercise in coronary artery disease. Chest 67(4):388–394

    Article  CAS  PubMed  Google Scholar 

  64. Lockie TP, Rolandi MC, Guilcher A et al (2012) Synergistic adaptations to exercise in the systemic and coronary circulations that underlie the warm-up angina phenomenon. Circulation 126(22):2565–2574

    Article  PubMed  Google Scholar 

  65. Okazaki Y, Kodama K, Sato H et al (1993) Attenuation of increased regional myocardial oxygen consumption during exercise as a major cause of warm-up phenomenon. J Am Coll Cardiol 21(7):1597–1604

    Article  CAS  PubMed  Google Scholar 

  66. van de Hoef TP, Meuwissen M, Piek JJ (2013) Fractional flow reserve and beyond. Heart 99(22):1699–1705

    Article  PubMed  Google Scholar 

  67. Dubois-Rande JL, Dupouy P, Aptecar E et al (1995) Comparison of the effects of exercise and cold pressor test on the vasomotor response of normal and atherosclerotic coronary arteries and their relation to the flow-mediated mechanism. Am J Cardiol 76(7):467–473

    Article  CAS  PubMed  Google Scholar 

  68. Hess OM, Bortone A, Eid K et al (1989) Coronary vasomotor tone during static and dynamic exercise. Eur Heart J 10(Suppl F):105–110

    Article  PubMed  Google Scholar 

  69. Kivowitz C, Parmley WW, Donoso R et al (1971) Effects of isometric exercise on cardiac performance. The grip test. Circulation 44(6):994–1002

    Article  CAS  PubMed  Google Scholar 

  70. Ferrara N, Vigorito C, Leosco D et al (1988) Regional left ventricular mechanical function during isometric exercise in patients with coronary artery disease: correlation with regional coronary blood flow changes. J Am Coll Cardiol 12(5):1215–1221

    Article  CAS  PubMed  Google Scholar 

  71. Brown BG, Lee AB, Bolson EL et al (1984) Reflex constriction of significant coronary stenosis as a mechanism contributing to ischemic left ventricular dysfunction during isometric exercise. Circulation 70(1):18–24

    Article  CAS  PubMed  Google Scholar 

  72. Levy WC, Cerqueira MD, Harp GD et al (1998) Effect of endurance exercise training on heart rate variability at rest in healthy young and older men. Am J Cardiol 82(10):1236–1241

    Article  CAS  PubMed  Google Scholar 

  73. Laslett LJ, Paumer L, Amsterdam EA (1985) Increase in myocardial oxygen consumption indexes by exercise training at onset of ischemia in patients with coronary artery disease. Circulation 71(5):958–962

    Article  CAS  PubMed  Google Scholar 

  74. Laughlin MH, Bowles DK, Duncker DJ (2012) The coronary circulation in exercise training. Am J Physiol Heart Circ Physiol 302(1):H10–H23

    Article  CAS  PubMed  Google Scholar 

  75. Gielen S, Schuler G, Hambrecht R (2001) Exercise training in coronary artery disease and coronary vasomotion. Circulation 103(1):E1–E6

    Article  CAS  PubMed  Google Scholar 

  76. Lavie CJ, Milani RV, Marks P et al (2001) Exercise and the heart: risks, benefits, and recommendations for providing exercise prescriptions. Ochsner J 3(4):207–213

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wiles JD, Coleman DA, Swaine IL (2010) The effects of performing isometric training at two exercise intensities in healthy young males. Eur J Appl Physiol 108(3):419–428

    Article  PubMed  Google Scholar 

  78. Cornelissen VA, Fagard RH, Coeckelberghs E et al (2011) Impact of resistance training on blood pressure and other cardiovascular risk factors: a meta-analysis of randomized, controlled trials. Hypertension 58(5):950–958

    Article  CAS  PubMed  Google Scholar 

  79. Cornelissen VA, Fagard RH (2005) Effect of resistance training on resting blood pressure: a meta-analysis of randomized controlled trials. J Hypertens 23(2):251–259

    Article  CAS  PubMed  Google Scholar 

  80. Millar PJ, McGowan CL, Cornelissen VA et al (2014) Evidence for the role of isometric exercise training in reducing blood pressure: potential mechanisms and future directions. Sports Med 44(3):345–356

    Article  PubMed  Google Scholar 

  81. Morey SS (1999) ACSM revises guidelines for exercise to maintain fitness. Am Fam Physician 59(2):473

    CAS  PubMed  Google Scholar 

  82. American Association of Cardiovascular and Pulmonary Rehabilitation, American College of Cardiology Foundation, American Heart Association Task Force on Performance Measures (Writing Committee to Develop Clinical Performance Measures for Cardiac Rehabilitation) et al (2010) AACVPR/ACCF/AHA 2010 update: performance measures on cardiac rehabilitation for referral to cardiac rehabilitation/secondary prevention services endorsed by the American College of Chest Physicians, the American College of Sports Medicine, the American Physical Therapy Association, the Canadian Association of Cardiac Rehabilitation, the Clinical Exercise Physiology Association, the European Association for Cardiovascular Prevention and Rehabilitation, the inter-American Heart Foundation, the National Association of Clinical Nurse Specialists, the Preventive Cardiovascular Nurses Association, and the Society of Thoracic Surgeons. J Am Coll Cardiol 56(14):1159–1167

    Article  Google Scholar 

  83. Kushner FG, Hand M, Smith SC Jr et al (2009) 2009 focused updates: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction (updating the 2004 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Catheter Cardiovasc Interv 74(7):E25–E68

    Article  PubMed  Google Scholar 

  84. American Heart A (2016) WHAT’S NEW & WHY. Important changes in the 2015 AHA guidelines update. JEMS 41(3):27–35

    Google Scholar 

  85. Hambrecht R, Walther C, Mobius-Winkler S et al (2004) Percutaneous coronary angioplasty compared with exercise training in patients with stable coronary artery disease: a randomized trial. Circulation 109(11):1371–1378

    Article  PubMed  Google Scholar 

  86. Gielen S, Schuler G, Adams V (2010) Cardiovascular effects of exercise training: molecular mechanisms. Circulation 122(12):1221–1238

    Article  PubMed  Google Scholar 

  87. Pitsavos C, Kavouras SA, Panagiotakos DB et al (2008) Physical activity status and acute coronary syndromes survival the GREECS (Greek study of acute coronary syndromes) study. J Am Coll Cardiol 51(21):2034–2039

    Article  PubMed  Google Scholar 

  88. Alpert JS, Thygesen K, Antman E et al (2000) Myocardial infarction redefined–a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 36(3):959–969

    Article  CAS  PubMed  Google Scholar 

  89. Uryash A, Bassuk J, Kurlansky P et al (2015) Non-invasive technology that improves cardiac function after experimental myocardial infarction: whole body periodic acceleration (pGz). PLoS One 10(3):e0121069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Pierce GL, Schofield RS, Casey DP et al (2008) Effects of exercise training on forearm and calf vasodilation and proinflammatory markers in recent heart transplant recipients: a pilot study. Eur J Cardiovasc Prev Rehabil 15(1):10–18

    Article  PubMed  Google Scholar 

  91. Chow CK, Jolly S, Rao-Melacini P et al (2010) Association of diet, exercise, and smoking modification with risk of early cardiovascular events after acute coronary syndromes. Circulation 121(6):750–758

    Article  PubMed  Google Scholar 

  92. Seiler C (1998) Role (of assessment) of the human collateral circulation in (characterizing) ischemic adaptation to repeated coronary occlusion. J Am Coll Cardiol 31(7):1698–1699

    Article  CAS  PubMed  Google Scholar 

  93. Zbinden R, Zbinden S, Meier P et al (2007) Coronary collateral flow in response to endurance exercise training. Eur J Cardiovasc Prev Rehabil 14(2):250–257

    Article  PubMed  Google Scholar 

  94. Tzivoni D, Maybaum S (1997) Attenuation of severity of myocardial ischemia during repeated daily ischemic episodes. J Am Coll Cardiol 30(1):119–124

    Article  CAS  PubMed  Google Scholar 

  95. Sedaghat-Hamedani F, Kayvanpour E, Frankenstein L et al (2015) Biomarker changes after strenuous exercise can mimic pulmonary embolism and cardiac injury–a metaanalysis of 45 studies. Clin Chem 61(10):1246–1255

    Article  CAS  PubMed  Google Scholar 

  96. Rehabilitation after cardiovascular diseases, with special emphasis on developing countries. Report of a WHO Expert Committee (1993) World Health Organ Tech Rep Ser 831:1–122

    Google Scholar 

  97. McCreery C, Cradock K, Fallon N et al (2013) Cardiac rehabilitation guidelines 2013. Irish Association of Cardiac Rehabilitation, Dublin. Available at: http://wwwiacr info/about/guidelines/

    Google Scholar 

  98. Wachtel T, Kucia A, Greenhill J (2008) Unstructured cardiac rehabilitation and secondary prevention in rural South Australia: does it meet best practice guidelines? Contemp Nurse 29(2):195–204

    Article  PubMed  Google Scholar 

  99. Oldridge N (2012) Exercise-based cardiac rehabilitation in patients with coronary heart disease: meta-analysis outcomes revisited. Futur Cardiol 8(5):729–751

    Article  CAS  Google Scholar 

  100. Turk-Adawi K, Sarrafzadegan N, Grace SL (2014) Global availability of cardiac rehabilitation. Nat Rev Cardiol 11(10):586–596

    Article  PubMed  PubMed Central  Google Scholar 

  101. Smith SC Jr, Benjamin EJ, Bonow RO et al (2011) AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation. Circulation 124(22):2458–2473

    Article  PubMed  Google Scholar 

  102. Kraus WE (2007) Cardiac rehabilitation. Humana Press 244(22):281–294

    Google Scholar 

  103. Suaya JA, Shepard DS, Normand SL et al (2007) Use of cardiac rehabilitation by Medicare beneficiaries after myocardial infarction or coronary bypass surgery. Circulation 116(15):1653

    Article  PubMed  Google Scholar 

  104. Price KJ, Gordon BA, Bird SR et al (2016) A review of guidelines for cardiac rehabilitation exercise programmes: is there an international consensus? Eur J Prev Cardiol 23(16):1715–1733

    Article  PubMed  Google Scholar 

  105. Huang K, Liu W, He D et al (2015) Telehealth interventions versus center-based cardiac rehabilitation of coronary artery disease: a systematic review and meta-analysis. Eur J Prev Cardiol 22(8):959–971

    Article  PubMed  Google Scholar 

  106. Anderson L, Oldridge N, Thompson DR et al (2016) Exercise-based cardiac rehabilitation for coronary heart disease: Cochrane systematic review and meta-analysis. J Am Coll Cardiol 67(1):1–12

    Article  PubMed  Google Scholar 

  107. Clark RA, Conway A, Poulsen V et al (2015) Alternative models of cardiac rehabilitation: a systematic review. Eur J Prev Cardiol 22(1):35–74

    Article  PubMed  Google Scholar 

  108. McCartney N (1998) Role of resistance training in heart disease. Med Sci Sports Exerc 30(10 Suppl):S396–S402

    Article  CAS  PubMed  Google Scholar 

  109. Sociedade Brasileira de C (2005) Guidelines for cardiac rehabilitation. Arq Bras Cardiol 84(5):431–440

    Google Scholar 

  110. Stone JA, Arthur HM, Canadian Association of Cardiac Rehabilitation Guidelines Writing G (2005) Canadian guidelines for cardiac rehabilitation and cardiovascular disease prevention, second edition, 2004: executive summary. Can J Cardiol 21(Suppl D):3D–19D

    PubMed  Google Scholar 

  111. Drobniak-Heldak D, Kolasinska-Kloch W, Rajtar-Salwa R (2009) Diagnostic and prognostic value of atherosclerosis risk factors for predicting 1 year outcome in patients with acute myocardial infarction and in patients with stable coronary artery disease receiving percutaneous transluminal coronary angioplasty. Folia Med Cracov 50(3–4):43–54

    PubMed  Google Scholar 

  112. Killen DA, Hamaker WR, Reed WA (1985) Coronary artery bypass following percutaneous transluminal coronary angioplasty. Ann Thorac Surg 40(2):133–138

    Article  CAS  PubMed  Google Scholar 

  113. Dunn SL, Stommel M, Corser WD et al (2009) Hopelessness and its effect on cardiac rehabilitation exercise participation following hospitalization for acute coronary syndrome. J Cardiopulm Rehabil Prev 29(1):32–39

    Article  PubMed  Google Scholar 

  114. Rosiek A, Leksowski K (2016) The risk factors and prevention of cardiovascular disease: the importance of electrocardiogram in the diagnosis and treatment of acute coronary syndrome. Ther Clin Risk Manag 12:1223–1229

    Article  PubMed  PubMed Central  Google Scholar 

  115. Balcazar HG (2016) Community health workers for recovery from acute coronary syndrome. Lancet Diabetes Endocrinol 4(3):194–195

    Article  PubMed  Google Scholar 

  116. Siudak Z, Pers M, Dusza K et al (2016) The efficacy of an education-based secondary outpatient prevention programme after acute coronary syndrome hospitalisations and treatment in Poland. The Patient Club initiative. Kardiol Pol 74(2):185–191

    Article  PubMed  Google Scholar 

  117. Ronaldson A, Molloy GJ, Wikman A et al (2015) Optimism and recovery after acute coronary syndrome: a clinical cohort study. Psychosom Med 77(3):311–318

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zeymer U, Berkenboom G, Coufal Z et al (2013) Predictors, cost, and outcomes of patients with acute coronary syndrome who receive optimal secondary prevention therapy: results from the antiplatelet treatment observational registries (APTOR). Int J Cardiol 170(2):239–245

    Article  PubMed  Google Scholar 

  119. Shin NM, Choi J (2010) Relationship between survivors’ perceived health status following acute coronary syndrome and depression symptoms during early recovery phase. Asian Nurs Res (Korean Soc Nurs Sci) 4(4):174–184

    Article  Google Scholar 

  120. von Susanne Heinzl B (2001) Myocardial infarct and acute coronary syndrome. New research results or acute treatment and secondary prevention. Med Monatsschr Pharm 24(11):374–378

    Google Scholar 

  121. Kokowicz P, Stec S, Flasinska K et al (2010) Troponin release following exercise test in patients with stable angina pectoris – risk factors and prognostic significance. Kardiol Pol 68(4):414–419

    PubMed  Google Scholar 

  122. Ortega-Carnicer J (2004) Giant R wave, convex ST-segment elevation, and negative T wave during exercise treadmill test. J Electrocardiol 37(3):231–236

    Article  PubMed  Google Scholar 

  123. Pecini R, Hammer-Hansen S, Dalsgaard M et al (2010) Determinants of exercise-induced increase of mitral regurgitation in patients with acute coronary syndromes. Echocardiography 27(5):567–574

    Article  PubMed  Google Scholar 

  124. Surawicz B, Saito S (1978) Exercise testing for detection of myocardial ischemia in patients with abnormal electrocardiograms at rest. Am J Cardiol 41(5):943–951

    Article  CAS  PubMed  Google Scholar 

  125. Zwart B, Van Kerkvoorde TC, van Werkum JW et al (2010) Vigorous exercise as a triggering mechanism for late stent thrombosis: a description of three cases. Platelets 21(1):72–76

    Article  CAS  PubMed  Google Scholar 

  126. Li L, Meng F, Li N et al (2015) Exercise training prevents the attenuation of anesthetic pre-conditioning-mediated cardioprotection in diet-induced obese rats. Acta Anaesthesiol Scand 59(1):85–97

    Article  CAS  PubMed  Google Scholar 

  127. Ding Y, Li J, Luan X et al (2004) Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience 124(3):583–591

    Article  CAS  PubMed  Google Scholar 

  128. van Vilsteren MC, de Greef MH, Huisman RM (2005) The effects of a low-to-moderate intensity pre-conditioning exercise programme linked with exercise counselling for sedentary haemodialysis patients in The Netherlands: results of a randomized clinical trial. Nephrol Dial Transplant 20(1):141–146

    Article  PubMed  Google Scholar 

  129. Correa-Costa M, Azevedo H, Amano MT et al (2012) Transcriptome analysis of renal ischemia/reperfusion injury and its modulation by ischemic pre-conditioning or hemin treatment. PLoS One 7(11):e49569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gholoobi A, Sajjadi SM, Shabestari MM et al (2015) The impact of remote ischemic pre-conditioning on contrast-induced nephropathy in patients undergoing coronary angiography and angioplasty: a double-blind randomized clinical trial. Electron Physician 7(8):1557–1565

    Article  PubMed  PubMed Central  Google Scholar 

  131. Nikeghbalian S, Mansoorian MR, Hosseini SM et al (2009) Reduction of the severity of ischemia reperfusion-induced pancreatitis by ischemic pre-conditioning of the liver. Saudi J Kidney Dis Transpl 20(6):1010–1014

    PubMed  Google Scholar 

  132. Hildebrandt HA, Kreienkamp V, Gent S et al (2016) Kinetics and signal activation properties of circulating factor(s) from healthy volunteers undergoing remote ischemic pre-conditioning. JACC Basic Transl Sci 1(1-2):3–13

    Article  PubMed  PubMed Central  Google Scholar 

  133. Katsura KI, Kurihara J, Kato H et al (2001) Ischemic pre-conditioning affects the subcellular distribution of protein kinase C and calcium/calmodulin-dependent protein kinase II in the gerbil hippocampal CA1 neurons. Neurol Res 23(7):751–754

    Article  CAS  PubMed  Google Scholar 

  134. Curry A, Guo M, Patel R et al (2010) Exercise pre-conditioning reduces brain inflammation in stroke via tumor necrosis factor-alpha, extracellular signal-regulated kinase 1/2 and matrix metalloproteinase-9 activity. Neurol Res 32(7):756–762

    Article  CAS  PubMed  Google Scholar 

  135. Roelants VA, Vanoverschelde JL, Vander Borght TM et al (2002) Reverse redistribution on exercise-redistribution (201)Tl SPECT in chronic ischemic dysfunction: predictive of functional outcome after revascularization? J Nucl Med 43(5):621–627

    PubMed  Google Scholar 

  136. Bontemps L, Nazzi M, Gabain M et al (1998) Theoretical model for myocardial functional characterization: application to a group of patients evaluated before and after surgical revascularization. J Nucl Cardiol 5(2):134–143

    Article  CAS  PubMed  Google Scholar 

  137. Vanoverschelde JL, Gerber B, Pasquet A et al (1996) Nuclear and echocardiographic imaging for prediction of reversible left ventricular ischemic dysfunction after coronary revascularization: current status and future directions. J Cardiovasc Pharmacol 28(Suppl 1):S27–S36

    CAS  PubMed  Google Scholar 

  138. Briffa T, Chow CK, Clark AM et al (2013) Improving outcomes after acute coronary syndrome with rehabilitation and secondary prevention. Clin Ther 35(8):1076–1081

    Article  PubMed  Google Scholar 

  139. Pack QR, Squires RW, Lopez-Jimenez F et al (2014) The current and potential capacity for cardiac rehabilitation utilization in the United States. J Cardiopulm Rehabil Prev 34(5):318–326

    Article  PubMed  Google Scholar 

  140. Ades PA, Keteyian SJ, Wright JS et al (2017) Increasing cardiac rehabilitation participation from 20% to 70%: a road map from the million hearts cardiac rehabilitation collaborative. Mayo Clin Proc 92(2):234–242

    Article  PubMed  Google Scholar 

  141. Ambrosetti M, Temporelli PL, Faggiano P et al (2014) Lower extremities peripheral arterial disease among patients admitted to cardiac rehabilitation: the THINKPAD registry. Int J Cardiol 171(2):192–198

    Article  PubMed  Google Scholar 

  142. Roblin D, Diseker RA, Orenstein D et al (2004) Delivery of outpatient cardiac rehabilitation in a managed care organization. J Cardpulm Rehabil 24(3):157–164

    Article  Google Scholar 

  143. Parkosewich JA (2008) Cardiac rehabilitation barriers and opportunities among women with cardiovascular disease. Cardiol Rev 16(1):36–52

    Article  PubMed  Google Scholar 

  144. Grace SL, Gravely-Witte S, Brual J et al (2008) Contribution of patient and physician factors to cardiac rehabilitation enrollment: a prospective multilevel study. Eur J Cardiovasc Prev Rehabil 15(5):548–556

    Article  PubMed  PubMed Central  Google Scholar 

  145. Grace SL, Evindar A, Abramson BL et al (2004) Physician management preferences for cardiac patients: factors affecting referral to cardiac rehabilitation. Can J Cardiol 20(11):1101–1107

    PubMed  Google Scholar 

  146. Grace SL, Gravely-Witte S, Brual J et al (2008) Contribution of patient and physician factors to cardiac rehabilitation referral: a prospective multilevel study. Nat Clin Pract Cardiovasc Med 5(10):653–662

    Article  PubMed  PubMed Central  Google Scholar 

  147. Grace SL, PI O, Marzolini S et al (2015) Observing temporal trends in cardiac rehabilitation from 1996 to 2010 in Ontario: characteristics of referred patients, programme participation and mortality rates. BMJ Open 5(11):e009523

    Article  PubMed  PubMed Central  Google Scholar 

  148. Daniels KM, Arena R, Lavie CJ et al (2012) Cardiac rehabilitation for women across the lifespan. Am J Med 125(9):937.e1-7

    Article  PubMed  Google Scholar 

  149. Grace SL, Grewal K, Stewart DE (2008) Factors affecting cardiac rehabilitation referral by physician specialty. J Cardiopulm Rehabil Prev 28(4):248–252

    Article  PubMed  Google Scholar 

  150. Oldridge NB (1997) Cardiac rehabilitation and risk factor management after myocardial infarction. Clinical and economic evaluation. Wien Klin Wochenschr 109(Suppl 2):6–16

    PubMed  Google Scholar 

  151. French DP, Cooper A, Weinman J (2006) Illness perceptions predict attendance at cardiac rehabilitation following acute myocardial infarction: a systematic review with meta-analysis. J Psychosom Res 61(6):757–767

    Article  PubMed  Google Scholar 

  152. King ML (2013) Affordability, accountability, and accessibility in health care reform: implications for cardiovascular and pulmonary rehabilitation. J Cardiopulm Rehabil Prev 33(3):144–152

    Article  PubMed  Google Scholar 

  153. Chew DP, Scott IA, Cullen L et al (2016) National Heart Foundation of Australia and Cardiac Society of Australia and New Zealand: Australian clinical guidelines for the management of acute coronary syndromes 2016. Med J Aust 205(3):128–133

    Article  PubMed  Google Scholar 

  154. Davies P, Taylor F, Beswick A et al (2010) Promoting patient uptake and adherence in cardiac rehabilitation. Cochrane Database Syst Rev 7(7):CD007131

    Google Scholar 

  155. Heran BS, Chen JM, Ebrahim S et al (2011) Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev 6(7):CD001800

    Google Scholar 

  156. Karmali KN, Davies P, Taylor F et al (2014) Promoting patient uptake and adherence in cardiac rehabilitation. Cochrane Database Syst Rev 25(6):CD007131

    Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from National Natural Science Foundation of China (81370280 and 81570332), the grant from Jiangsu Province’s Key Provincial Talents Program (ZDRCA16019), the grant from Yangpu Commission of Science and Technology Commission, and Yangpu Commission of Health and Family Planning (YP15M07), and the “Chenguang Program” supported by Yangpu Hospital, Tongji University School of Medicine (Ye1201409).

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhua Yao or Lei Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Z., Gu, H., Dai, Q., Wang, H., Yao, J., Zhou, L. (2017). Exercise Exerts Its Beneficial Effects on Acute Coronary Syndrome: Clinical Evidence. In: Xiao, J. (eds) Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, vol 1000. Springer, Singapore. https://doi.org/10.1007/978-981-10-4304-8_2

Download citation

Publish with us

Policies and ethics