Skip to main content

Metamaterial-Based Planar Antennas

  • Conference paper
  • First Online:
Frontiers in Electronic Technologies

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 433))

  • 715 Accesses

Abstract

Microstrip patch antenna is used extensively in wireless and mobile applications due to its low profile and lightweight. However, this antenna is prone to low gain, limited bandwidth and increased cross polarization levels. Metamaterial can be integrated onto an antenna to improve its performance. A possible approach to enhance the performance is by suppressing surface waves. This can be achieved by using Electromagnetic Bandgap (EBG) structures. In addition, plane waves that come in contact with EBG structures can be reflected in phase thereby enhancing the radiation properties of the microstrip antenna. Therefore, the main motivation underlying this work is to provide an overview on the evolution, characterization and performance enhancement of microstrip antennas with EBG structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.A. Munk, Metamaterials: Critique and Alternatives (Wiley, Hoboken, 2009)

    Book  Google Scholar 

  2. A.A. Oliner, Periodic structures and photonic-band-gap terminology: historical perspectives, in 29th European Microwave Conference, 1999, (Munich, Germany, 1999), pp. 295–298

    Google Scholar 

  3. F. Yang, Y. Rahmat-Samii, Electromagnetic Bandgap Structures in Antenna Engineering (Cambridge University Press, 2009)

    Google Scholar 

  4. N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (John Wiley & Sons, Inc, 2006)

    Google Scholar 

  5. J.C. Bose, On the rotation of plane of polarisation of electric waves by a twisted structure. Proc. R. Soc. Lond. 63, 146–152 (1898)

    Article  Google Scholar 

  6. I. Lindell, A.H. Sihvola, J. Kurkijarvi, Karl f Lindman: the last hertzian and a harbinger of electromagnetic chirality. IEEE Antennas Propag. Mag. 34(3), 24–30 (1992)

    Article  Google Scholar 

  7. W.E. Kock, Metallic delay lenses. Nature 163, 324–325 (1949)

    Article  Google Scholar 

  8. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of E and µ. Sov. Phys. Uspekh 10, 509 (1968)

    Article  Google Scholar 

  9. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  Google Scholar 

  10. S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  Google Scholar 

  11. C.T. Chan, K.M. Ho, C.M. Soukoulis, Photonic band gaps in experimentally realizable periodic dielectric structures. Europhys. Lett. 16, 563 (1991)

    Article  Google Scholar 

  12. E. Yablonovitch, T.J. Gmitter, Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295–2298 (1991)

    Article  Google Scholar 

  13. X. Ying, A. Alphones, Propagation characteristics of complimentary split ring resonator (CSRR) based EBG structure. Microw. Opt. Technol. Lett. 47 (2005)

    Google Scholar 

  14. M.M. Karbassian, H. Ghafouri-Shiraz, Effect of shape of patterns on the performance of microstrip photonic band-gap filters. Microw. Opt. Technol. Lett. 48, 1007–1011 (2006)

    Article  Google Scholar 

  15. N. Yang, Z.N. Chen, Y.Y. Wang, M.Y.W. Chia, A two-layer compact electromagnetic bandgap (EBG) structure and its applications in microstrip filter design. Microw. Opt. Technol. Lett. 37 (2002)

    Google Scholar 

  16. S.K. Menon, K. Vasudevan, C.K. Aanandan, P. Mohanan, Design and analysis of microstrip lines with EBG-backed ground planes of different geometrical shapes. Microw. Opt. Technol. Lett. 46, 544–546 (2005)

    Article  Google Scholar 

  17. S.M. Moghadasi, Compact and Wideband 1-D mushroom-like EBG filters. Prog. Electromagnet. Res. 83, 323–333 (2008)

    Google Scholar 

  18. B.Q. Lin, X.-Y. Ye, X.-Y. Cao, F. Li, Uniplanar EBG structure with improved compact and wideband characteristics. Electron. Lett. 44, 1362–1363 (2008)

    Google Scholar 

  19. J.D. Ruiz, F.L. Martinez, J. Hinojosa, 1D Koch fractal electromagnetic bandgap microstrip structures with r/a ratios higher than 0.5. Microw. Opt. Technol. Lett. 53, 646–649 (2011)

    Article  Google Scholar 

  20. S.K. Padhi, Improved performance of EBGs on a co-planar transmission line using tapered distribution. Microw. Opt. Technol. Lett. 42, 128–131 (2004)

    Article  Google Scholar 

  21. G. Gnanagurunathan, K.T. Selvan, Performance analysis of complementary and non-complementary EBG geometries, presented at the progress, in Electromagnetics Research Symposium (PIERS 2012), (Kuala Lumpur, Malaysia, 2012)

    Google Scholar 

  22. F. Yang, Y. Rahmat-Samii, Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications. IEEE Trans. Antennas Propag. 51, 2691–2703 (2003)

    Article  Google Scholar 

  23. D. Sievenpiper, L. Zhang, R.F.J. Broas, N.G. Alexopolous, E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 47, 2059–2074 (1999)

    Article  Google Scholar 

  24. R. Coccioli, F.-R. Yang, K.-P. Ma, T. Itoh, Aperture-coupled patch antenna on UC-PBG substrate. IEEE Trans. Microw. Theory Tech. 47, 2123–2130 (1999)

    Article  Google Scholar 

  25. Y. Qian, R. Coccioli, D. Sievenpiper, V. Radisic, E. Yablonovitch, T. Itoh, Microstrip patch antenna using novel photonic band-gap structures. Microw. J. 42, 6676 (1999)

    Google Scholar 

  26. G. Gnanagurunathan, K.T. Selvan, Gain enhancement of microstrip patch antenna by using complementary EBG geometries. J. Electromagnet. Waves Appl. 26, 329–341, (2012) (2012/01/01)

    Google Scholar 

  27. R. Gonzalo, P. Maagt, M. Sorolla, Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates. IEEE Trans. Microw. Theory Tech. 47, 2131–2138 (1999)

    Article  Google Scholar 

  28. F. Yang, C.-S. Kee, Y. Rahmat-Samii, Step-like structure and EBG structure to improve the performance of patch antennas on high dielectric substrate, in IEEE Antennas and Propagation Society International Symposium, (Boston, 2001), pp. 482–485

    Google Scholar 

  29. M. Fallah-Rad, L. Shafai, Enhanced performance of a microstrip patch antenna using a high impedance EBG structure, in IEEE Antennas and Propagation Society International Symposium, 2003, (2003), pp. 982–985

    Google Scholar 

  30. X.L. Bao, G. Ruvio, M.J. Ammann, Low-profile dual-frequency GPS patch antenna enhanced with dual-band EBG structure. Microw. Opt. Technol. Lett. 49 (2007)

    Google Scholar 

  31. K.R. Jha, G. Singh, Analysis and design of enhanced directivity microstrip antenna at terahertz frequency by using electromagnetic bandgap material, in International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 24 (2010)

    Google Scholar 

  32. K.P. Ma, K. Hirose, F.-R. Yang, Y. Qian, T. Itoh, Realisation of magnetic conducting surface using novel photonic bandgap structure. Electron. Lett. 34, 2041–2042 (1998)

    Article  Google Scholar 

  33. D. Qu, L. Shafai, A. Foroozesh, Improving microstrip patch antenna performance using EBG substrates. IEE Proc. Microw. Antennas Propag. 153, 558–563 (2006)

    Article  Google Scholar 

  34. C.C. Chiau, X. Chen, C. Parini, Multiperiod EBG structure for wide stopband circuits. IEE Proc. Microw. Antennas Propag. 150, 489–492 (2003)

    Article  Google Scholar 

  35. D.N. Elsheak, M.F. Iskander, H.A. Elsade, E.A. Abdallah, H. Elhenawy, Enhancement of ultra-wideband microstrip monopole antenna by using unequal arms V-shaped slot printed on metamaterial surface. Microw. Opt. Technol. Lett. 52, 2203–2209 (2010)

    Article  Google Scholar 

  36. G. Gnanagurunathan, K.T. Selvan, Artificial magnetic conductors on wideband patch antenna. Progress Electromagn. Res. Lett. 36, 9–19 (2013)

    Google Scholar 

  37. W. Yang, H. Wang, W. Che, J. Wang, A wideband and high-gain edge-fed patch antenna and array using artificial magnetic conductor structures. IEEE Antennas Wirel. Propag. Lett. 12, 769–772 (2013)

    Article  Google Scholar 

  38. C.C. Chiau et al., A sandwiched multiperiod EBG structure for microstrip patch antennas. Microw. Opt. Technol. Lett. 46, 437–440 (2005)

    Google Scholar 

  39. Y. Zhang, J. von Hagen, M. Younis, C. Fischer, W. Wiesbeck, Planar artificial magnetic conductors and patch antennas. IEEE Trans. Antennas Propag. 51 (2003)

    Google Scholar 

  40. X. J. Wang, Y. Hao, Dual-band operation of an electromagnetic band-gap patch antenna. Microw. Opt. Technol. Lett. 49 (2007)

    Google Scholar 

  41. S. Velan, E.F. Sundarsingh, M. Kanagasabai, A.K. Sarma, C. Raviteja, R. Sivasamy et al., Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications. IEEE Antennas Wirel. Propag. Lett. 14, 249–252 (2015)

    Article  Google Scholar 

  42. A. Pirhadi, F. Keshmiri, M. Hakkak, M. Tayarani, Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer. Progress Electromag. Res. 70, 1–20 (2007)

    Article  Google Scholar 

  43. D.H. Lee, Y.J. Lee, J. Yeo, R. Mittra, W.S. Park, Directivity enhancement of circular polarized patch antenna using ring-shaped frequency selective surface superstrate. Microw. Opt. Technol. Lett. 49, 199–201 (2007)

    Article  Google Scholar 

  44. Z.-C. Ge, W.-X. Zhang, Z.-G. Liu, Y.Y. Gu, Broadband and high-gain printed antennas constructed from Fabry–Perot resonator structure using EBG or FSS cover. Microw. Opt. Technol. Lett. 48, 1272–1274 (2005)

    Google Scholar 

  45. L. Moustafa, B. Jecko, Design of a wideband highly directive EBG antenna using double-layer frequency selective surfaces and multifeed technique for application in the ku-band. IEEE Antennas Wirel. Propag. Lett. 9, 342–346 (2010)

    Article  Google Scholar 

  46. Y. Ge, K.P. Esselle, Y. Hao, Design of low-profile high-gain EBG resonator antennas using a genetic algorithm. IEEE Antennas Wirel. Propag. Lett. 6, 480–483 (2007)

    Article  Google Scholar 

  47. L. Leger, T. Monediere, J. Bernard, Enhancement of gain and radiation bandwidth for a planar 1-D EBG antenna. IEEE Microw. Wirel. Compon. Lett. 15, 573–575 (2005)

    Article  Google Scholar 

  48. A.A. Eldek, A miniaturized patch antenna at 2.4 GHz using uni-planar compact photonic band gap structure. Microw. Opt. Technol. Lett. 50, 1360–1363 (2008)

    Article  Google Scholar 

  49. H.-H. Xie, Y.-C. Jiao, K. Song, B. Yang, Miniature electromagnetic band-gap structure using spiral ground plane. Progress Electromag. Res. Lett. 17, 163–170 (2010)

    Article  Google Scholar 

  50. M.F. Karim, H. Ghafouri-Shiraz, EBG-assisted slot antenna for Bluetooth applications. Microw. Opt. Technol. Lett. 48, 482–487 (2006)

    Article  Google Scholar 

  51. S. Yan, P.J. Soh, M. Mercuri, D.M.M.P. Schreurs, G.A.E. Vandenbosch, Low profile dual-band antenna loaded with artificial magnetic conductor for indoor radar systems. IET Radar Sonar Navig. 9, 184–190 (2015)

    Article  Google Scholar 

  52. F. Yang, Y. Rahmat-Samii, Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications. 51, 2936–2946 (2003)

    Google Scholar 

  53. K. Payandehjoo, R. Abhari, Employing EBG structures in multiantenna systems for improving isolation and diversity gain. IEEE Antennas Wirel. Propag. Lett. 8, 1162–1165 (2009)

    Article  Google Scholar 

  54. H.S. Farahani, M. Veysi, M. Kamyab, A. Tadjalli, Mutual coupling reduction in patch antenna arrays using UC-EBG superstrate. IEEE Antennas Wirel. Propag. Lett. 9, 57–59 (2010)

    Article  Google Scholar 

  55. F. Consoli, R. Catalano, R. Laudani, L. Tumino, S. Barbarino, Planar slot antenna with PBG filter for wireless communications. Microw. Opt. Technol. Lett. 49, 551–555 (2007)

    Article  Google Scholar 

  56. T. Masri, M.K.A. Rahim, Dual-band microstrip antenna array with a combination of mushroom, modified Minkowski and Sierpinski electromagnetic band gap structures. IET Microw. Antennas Propag. 4, 1756–1763 (2010)

    Article  Google Scholar 

  57. G. Gnanagurunathan, Electromagnetic Bandgap stucture based patch antenna (PHD, Department of Electrical and Electronic Engineering, University of Nottingham, 2012)

    Google Scholar 

Download references

Acknowledgements

This paper is based on the primary author’s doctoral write-up [57].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gnanam Gnanagurunathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Gnanagurunathan, G., Selvan, K.T. (2017). Metamaterial-Based Planar Antennas. In: Prabaharan, S., Thalmann, N., Kanchana Bhaaskaran, V. (eds) Frontiers in Electronic Technologies. Lecture Notes in Electrical Engineering, vol 433. Springer, Singapore. https://doi.org/10.1007/978-981-10-4235-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4235-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4234-8

  • Online ISBN: 978-981-10-4235-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics