Skip to main content

Microneedle-assisted delivery of NSAIDs

  • Conference paper
  • First Online:
CMBEBIH 2017

Part of the book series: IFMBE Proceedings ((IFMBE,volume 62))

  • 4363 Accesses

Abstract

Transdermal drug delivery offers a number of advantages including sustained release, improved patient compliance, avoidance of gastric irritation, as well as elimination of pre-systemic first-pass effect. However, only few medications can be delivered through the transdermal route in therapeutic amounts. NSAIDs are consisted of a group of drugs that are widely used, but their use by oral or transdermal system is limited due to a number of side effects. Therefore, NSAIDs are ideal candidates for delivery via microneedles, a relatively new method of drug delivery. A new concept was introduced known as microneedles and these could be used to effectively deliver drugs using micron-sized needles in a minimally invasive and painless manner. Microneedles can be used to enhance transdermal drug delivery and they can be fabricated in different forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Davidson, B. Al-Qallaf, D. Brusan Das. Transdermal drug delivery by coated microneedles: Geometry effects on effective skin thickness and drug permeability. Chem. Eng. Res. Des, 2008;86(11):1196–1206.

    Google Scholar 

  2. A. Ling Teo, C. Shearwood, K. Chye Ng, J. Lu, S. Moochhala. Transdermal microneedles for drug delivery applications. Mater. Sci. Eng. B, 2006;132(1-2):151–154.

    Google Scholar 

  3. S. Torbica, G. Vuleta, N. Ignjatović, D. Uskoković. Polimerne nanočestice - nosači za transdermalnu primjenu ljekovitih supstanci. Tehnika-Novi materijali, 2009;18(4):1-14.

    Google Scholar 

  4. K. Cheung, D. B. Das. Microneedles for drug delivery: trends and progress. Drug Deliv, 2016;23(7):2338-2354.

    Google Scholar 

  5. J. Hadgraft, J. du Plessis, C. Goosen. The selection of non-steroidal anti-inflammatory agents for dermal delivery. Int. J. Pharm, 2000;207(1-2):31-37.

    Google Scholar 

  6. A. P. Raphael, G. Gerrastazu, F. Sonvico, T. W. Prow. Formulation design for topical drug and nanoparticle treatment of skin disease. Ther. Deliv, 2015;6(2):197–216.

    Google Scholar 

  7. S. Vučen, N. Pajić Bubić, S. Savić, G. Vuleta. Mikroigle – fizički pojačivači (trans)dermalne isporuke lijekova. Arh. Farm, 2014;64:295-321.

    Google Scholar 

  8. J. E. Grice, T. W. Prow, M. A. F. Kendall, M.S. Roberts. Electrical and physical methods of skin penetration enhancement. In Topical and Transdermal Drug Delivery: Principles and Practise (eds H. A. E. Benson and A. C. Watkinson) John Wiley & Sons, Inc., Hoboken, NJ, USA. 2011:45-47.

    Google Scholar 

  9. J. W. So, H. H. Park, S. S. Lee, D. C. Kim, S. C. Shin, C. W. Cho. Effect of microneedle on the pharmacokinetics of ketoprofen from its transdermal formulations. Drug Deliv, 2009;16(1):52–56.

    Google Scholar 

  10. G. M. Barratt. Therapeutic applications of colloidal drug carriers. Pharm. Sci. Technolo. Today, 2000;3(5):163-171.

    Google Scholar 

  11. G. Cevc, S. Mazgareanu, M. Rother. Preclinical characterisation of NSAIDs in ultradeformable carriers or conventional topical gels. Int. J. Pharm, 2008;360(1-2):29-39.

    Google Scholar 

  12. S. E. Cross, M.S. Roberts. Physical enhancement of transdermal drug application: Is delivery technology keeping up with pharmaceutical development? Curr. Drug Deliv, 2004;1(1):81-92.

    Google Scholar 

  13. D. J. Yadav, K. A. Vaidya, P. R. Kulkarni, R. A. Raut. Microneedles: Promising technique for transdermal drug delivery. Int. J. Phar. Bio. Sci, 2011;2(1):684-708.

    Google Scholar 

  14. K. Mooney, J. C. McElnay, R. F. Donnelly. Children’s views on microneedle use as an alternative to blood sampling for patient monitoring. Int. J. Pharm. Pract., 2014;22(5):335-344.

    Google Scholar 

  15. J. H. Oh, H. H. Park, K. Y. Do, M. Han, D. H. Hyun, C. G. Kim et al. Influence of the delivery systems using a microneedle array on the permeation of a hydrophilic molecule, calcein. Eur. J. Pharm. Biopharm, 2008;69(3):1040–1045.

    Google Scholar 

  16. E. Khafagy, M. Morishita, Y. Onuki, K. Takayama. Current challenges in non-invasive insulin delivery systems: A comparative review. Adv. Drug Deliv. Rev, 2007;59(15):1521–1546.

    Google Scholar 

  17. J. J. Escobar – Chávez, D. Bonilla-Martinez, M. A. Villegas-González, E. Molina-Trinidad, N. Casas-Alancaster, A. L. Revilla-Vázquez. Microneedles: a valuable physical enhancer to increase transdermal drug delivery. J. Clin. Pharmacol, 2011;51(7):964-977.

    Google Scholar 

  18. P. M. Wang, M. Cornwell, M. R. Prausnitz. Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technol. Ther, 2005;7(1):131–141.

    Google Scholar 

  19. J. R. Windmiller, G. Valdes-Ramirez, N. Zhou, M. Zhou, P. R. Miller, C. Jin et al. Bicomponent microneedle array biosensor for minimally-invasive glutamate monitoring. Electroanalysis, 2011; 23(10):2302– 2309.

    Google Scholar 

  20. J. Trzebinski, S. Sharma, A. R. Moniz, K. Michealakis, Y. Zhang, A. E. Cass. Microfluidic device to investigate factors affecting performance in biosensors designed for transdermal applications. Lab. Chip, 2012;12(2):348–352.

    Google Scholar 

  21. J. R. Windmiller, N. Zhou, M. C. Chuang, G. Valdes-Ramirez, P. Santhosh, P. R. Miller et al. Microneedle arraybased carbon paste amperometric sensors and biosensors. Analyst, 2011;136(9):1846–1851.

    Google Scholar 

  22. L. Nordquist, N. Roxhed, P. Griss, G. Stemme. Novel Microneedle Patches for Active Insulin Delivery are Efficient in Maintaining Glycaemic Control: An Initial Comparison with Subcutaneous Administration. Pharm. Res, 2007;24(7):1381-1388.

    Google Scholar 

  23. V. Leeladurga, U. C. Teja, S. K. Sultana, K. Sudeep, V. S. Anusha, T. Han et al. Application of Microneedle Arrays for Enhancement of Transdermal Permeation of Insulin: In Vitro Experiments, Scaling Analyses and Numerical Simulations. AAPS PharmSciTech, 2016;17(4):915-922.

    Google Scholar 

  24. Y. Ito, E. Hagiwara, A. Saeki, N. Sugioka, K. Takada. Feasibility of microneedles for percutaneous absorption of insulin. Eur. J. Pharm. Sci, 2006;29(1):82-88.

    Google Scholar 

  25. S. P. Davis, W. Martanto, M. G. Allen, M. R. Prausnitz. Hollow Metal Microneedles for Insulin Delivery to Diabetic Rats. IEEE Trans. Biomed. Eng, 2005;52(5):909-915.

    Google Scholar 

  26. M. Kaur, K. B. Ita, I. E. Popova, S. J. Parikh, D. A. Bair. Microneedle-assisted delivery of verapamil hydrochloride and amlodipine besylate. Eur. J. Pharm. Biopharm, 2014;86(2): 284–291.

    Google Scholar 

  27. B. N. Nalluri, S. Kosuri, S. S. Valluru, C. T. Uppuluri, A. S. Shaik. Microneedle Assisted Transdermal Delivery of Levodopa. Ind. J. Pharm. Edu. Res, 2016;50(2):287-294.

    Google Scholar 

  28. E. X. Vrouwe, R. Luttge, I. Vermes, A. van den Berg. Microchip capillary electrophoresis for point-of-care analysis of lithium. Clin. Chem, 2007;53(1):117-12.

    Google Scholar 

  29. D. V. McAllister, M. G. Allen, M. R. Prausnitz. Microfabricated microneedles for gene and drug delivery. Annu. Rev. Biomed. Eng, 2000;2(1):289-313.

    Google Scholar 

  30. J. H. Park, M. G. Allen, M. R. Prausnitz. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J. Control Release, 2005;104(1):51-66.

    Google Scholar 

  31. R. Kumar, A. Philip. Modified Transdermal Technologies: Breaking the Barriers of Drug Permeation via the Skin. Trop. J. Pharm. Res, 2007;6(1):633-644.

    Google Scholar 

  32. S. H. Bariya, M. C. Gohel, T. A. Mehta, O. P. Sharma. Microneedles: An emerging transdermal drug delivery system. J. Pharm. Pharmacol, 2012;64(1):11-29.

    Google Scholar 

  33. M. R. Prausnitz. Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev, 2004;56(5):581– 587.

    Google Scholar 

  34. A. K. Banga. Transcutaneus Immunisation via Physical Methods in Transdermal and intradermal delivery of therapeutic agents: Application of physical technologies (eds A. K. Banga) Boca Raton, Fl: CRC Press, Taylor & Francis Group, NY, USA. 2011:219-242.

    Google Scholar 

  35. B. Zorec, V. Préat, D. Miklavčič, N. Pavšelj. Active enhancement methods for intra and transdermal drug delivery: a review. Zdrav. Vestn, 2013;82:339-356.

    Google Scholar 

  36. S. Henry, D. V. McAllister, M. R. Praunitz. Microfabricated microneedles: a novel approach to transdermal drug delivery. J. Pharm. Sci, 1998;87(8):922-925.

    Google Scholar 

  37. M. S. Nandagopal, R. Anton, S. Rangabhashiyam, N. Sreekumar, N. Selvaraju. Overview of microneedle system: a third generation transdermal drug delivery approach. Microsyt. Technol, 2014;20(7):1249-1272.

    Google Scholar 

  38. Y. Xie, B. Xu, Y. Gao. Controlled transdermal delivery of model drug compounds by mems microneedle array. Nanomedicine, 2005;1(2):184-190.

    Google Scholar 

  39. H. L. Quinn, L. Bonham, C. M. Hughes, R. F. Donnelly. Design of a dissolving microneedle platform for transdermal delivery of a fixed-dose combination of cardiovascular drugs, J. Pharm Sci, 2015;104(10):3490-3500.

    Google Scholar 

  40. M. B. Brown, M. J. Traynor, G. P. Martin, F. K. Akomeah. Transdermal drug delivery systems: skin perturbation devices. Methods Mol. Biol, 2008;437:119-139.

    Google Scholar 

  41. P. Rao, E. E. Knaus. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): Cyclooxygenase (COX) inhibition and beyond. J. Pharm. Pharm. Sci, 2008;11(2):81-110.

    Google Scholar 

  42. A. Perić, M. Toskić-Radojičić. Analiza upotrebe i ispoljavanja neželjenih dejstava nesteroidnih antiinflamatornih lekova: pilot studija. Vojnosanit. Pregl, 2006; 63(3): 271–277.

    Google Scholar 

  43. J. Gibson. A survey of patients’ knowledge of gastrointestinal side-effects of NSAIDs in a rheumatology clinic. Qual. Prim. Care, 2006;14:95–97.

    Google Scholar 

  44. T. Hoshino, K. Tabuchi, A. Hara. Effects of NSAIDs on the Inner Ear: Possible Involvement in Cochlear Protection. Pharmaceuticals, 2010;3(5):1286-1295.

    Google Scholar 

  45. S. R. Vučen, G. Vuleta, A. M. Crean, A. C. Moore, N. Ignjatović, D. Uskoković. Improved percutaneous delivery of ketoprofen using combined application of nanocarriers and silicon microneedles. JPP, 2013:65(10):1451-1462.

    Google Scholar 

  46. J. Stahl, M. Wohlert, M. Kietzmann. Microneedle pretreatment enhances the percutaneous permeation of hydrophilic compounds with high melting points. BMC Pharmacol. Toxicol, 2012;13(5):2-7.

    Google Scholar 

  47. P. Ghosh, R. R. Pinninti, D. C. Hammell, K. S. Paudel, A. L. Stinchcomb. Development of a Codrug Approach for Sustained Drug Delivery Across Microneedle-Treated Skin. J. Pharm. Sci, 2013; 102(5):1458-1467.

    Google Scholar 

  48. D. I. J. Morrow, P. A. McCarron, A. D. Woolfson, R. F. Donnelly. Innovative Strategies for Enhancing Topical and Transdermal Drug Delivery. TODDJ, 2007;1:36-59.

    Google Scholar 

  49. Y. G. Bachha, A. Heinrich, Y. N. Kalia. Using laser microporation to improve transdermal delivery of diclofenac: Increasing bioavailability and the range of therapeutic applications. Eur. J.Pharm. Biopharm, 2011;78(3):408–414.

    Google Scholar 

  50. M. Irfan, S. Verma, A. Ram. Preparation and characterization of ibuprofen loaded transferosome as a novel carrier for transdermal drug delivery system. Asian J. Pharm. Clin. Res, 2012;5(3):162-165.

    Google Scholar 

  51. M. T. McCrudden, A. Z. Alkilani, C. M. McCrudden, E. McAlister, H. O. McCarthy, A. D. Woolfso et al. Design and physicochemical characterisation of novel dissolving polymeric microneedle arrays for transdermal delivery of high dose, low molecular weight drugs. J. Control. Release, 2014; 180:71–80.

    Google Scholar 

  52. N. K. Brogden, M. Milewski, P. Ghosh, L. Hardi, L. J. Crofford, A. L. Stinchcomb. Diclofenac delays micropore closure following microneedle treatment in human subjects. J. Control. Release, 2012;163(2): 220–229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Vranić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Vranić, E., Tucak, A., Vrabac, D., Rahić, O., Elezović, A., Hadžiabdić, J. (2017). Microneedle-assisted delivery of NSAIDs. In: Badnjevic, A. (eds) CMBEBIH 2017. IFMBE Proceedings, vol 62. Springer, Singapore. https://doi.org/10.1007/978-981-10-4166-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4166-2_47

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4165-5

  • Online ISBN: 978-981-10-4166-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics