Skip to main content

Effect of Incidence Angle on Optical Bandwidth in Ternary Photonic Crystal for Filter Application

  • Conference paper
  • First Online:
Industry Interactive Innovations in Science, Engineering and Technology

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 11))

Abstract

Optical bandwidth of ternary photonic crystal based Butterworth filter is computed for polarized incidence of electromagnetic wave; and effect of incidence angle and structural parameters are studied within lower range on the filter performance. Result is compared with that obtained for normal incidence. Transfer matrix technique is adopted for calculation; and SiO2/air/TiO2 material system is considered for simulation purpose. Simulated findings in favor of p-polarized wave incidence for varying incidence angle owing to higher bandwidth and less ripple in passband for filter application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loudon, R.: The propagation of electromagnetic energy through an absorbing dielectric. J. Phys. A 3, 233–245 (1970)

    Article  Google Scholar 

  2. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2061 (1987)

    Article  Google Scholar 

  3. Andreani, L.C., Agio, M., Bajoni, D., Belotti, M., Galli, M., Guizzetti, G., Malvezzi, A.M., Marabelli, F., Patrini, M., Vecchi, G.: Optical properties and photonic mode dispersion in two-dimensional and waveguide-embedded photonic crystals. Synth. Metals 139, 695–700 (2003)

    Article  Google Scholar 

  4. Villa-Villa, F., Gaspar-Armenta, J.A., Mendoza-Su´arez, A.: Surface modes in one dimensional photonic crystals that include left handed materials. J. Electromag. Waves Appl. 21, 485–499 (2007)

    Article  Google Scholar 

  5. Edalati, A., Boutayeb, H., Denidni, T.A.: Band structure analysis of reconfigurable metallic crystals: effect of active elements. J. Electromag. Waves Appl. 21, 2421–2430 (2007)

    Article  Google Scholar 

  6. Chen, J.C., Haus, H.A., Fan, S., Villeneuve, P.R., Joannopoulos, J.D.: Optical filters from photonic band gap air bridges. J. Lightwave Technol. 14, 2575–2580 (1996)

    Article  Google Scholar 

  7. Golmohammadi, S., Moravvej-Farshi, M.K., Rostami, A., Zarifkar, A.: Spectral analysis of the Fibonacci-class one-dimensional quasi-periodic structures. Progr. Electromag. Res. 75, 69–84 (2007)

    Article  Google Scholar 

  8. Mao, D., Ouyang, Z., Wang, J.C.: A photonic-crystal polarizer integrated with the functions of narrow bandpass and narrow transmission angle filtering. Appl. Phys. B 90, 127–131 (2008)

    Article  Google Scholar 

  9. Rojas, J.A.M., Alpuente, J., L´opez-Esp´i, P., Garc´ia, P.: Accurate model of electromagnetic wave propagation in unidimensional photonic crystals with defects. J. Electromag. Waves Appl. 21, 1037–1051 (2007)

    Google Scholar 

  10. Mukherjee, S., Roy, A., Deyasi, A., Ghosal, S.: Dependence of photonic bandgap on material composition for two-dimensional photonic crystal with triangular geometry. Found. Front. Comput. Commun. Electr. Eng. (CRC Press), chapter 52, 259–263 (2016)

    Google Scholar 

  11. Limpert, J., Liem, A., Reich, M., Schreiber, T., Nolte, S., Zellmer, H., Tünnermann, A., Broeng, J., Petersson, A., Jakobsen, C.: Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier. Opt. Express 12, 1313–1319 (2004)

    Article  Google Scholar 

  12. Hansryd, J., Andrekson, P.A., Westlund, M., Li, J., Hedekvist, P.O.: Fiber-based optical parametric amplifiers and their applications. IEEE J. Sel. Topics Quantum Electr. 8, 506–520 (2002)

    Article  Google Scholar 

  13. D’Orazio, A., De Palo, V., De Sario, M., Petruzzelli, V., Prudenzano, F.: Finite difference time domain modeling of light amplification in active photonic bandgap structures. Progr. Electromag. Res. 39, 299–339 (2003)

    Article  Google Scholar 

  14. Kalchmair, S., Detz, H., Cole, G.D., Andrews, A.M., Klang, P., Nobile, M., Gansch, R., Ostermaier, C., Schrenk, W., Strasser, G.: Photonic crystal slab quantum well infrared photodetector. Appl. Phys. Lett. 98, 011105 (2011)

    Article  Google Scholar 

  15. Belhadj, W., AbdelMalek, F., Bouchriha, H.: Characterization and study of photonic crystal fibres with bends. Mater. Sci. Eng.: C 26, 578–579 (2006)

    Article  Google Scholar 

  16. Azuma, H.: Quantum computation with kerr-nonlinear photonic crystals. J. Phys. D: Appl. Phys. 41, 025102 (2008)

    Article  Google Scholar 

  17. Bayat, G., Rafi, G.Z., Shaker, G.S.A., Ranjkesh, N., Chaudhuri, S.K., Safavi-Naeini, S.: Photonic-crystal based polarization converter for terahertz integrated circuit. IEEE Trans. Microwave Theory Tech. 58, 1976–1984 (2010)

    Article  Google Scholar 

  18. Gao, Y., Chen, H., Qiu, H., Lu, Q., Huang, C.: Transmission spectra characteristics of 1D photonic crystals with complex dielectric constant. Rare Metals 30, 150–154 (2011)

    Article  Google Scholar 

  19. Reininger, P., Kalchmair, S., Gansch, R., Andrews, A.M., Detz, H., Zederbauer, T., Ahn, S.I., Schrenk, W., Strasser, G.: Optimized photonic crystal design for quantum well infrared photodetectors. Proc. SPIE 8425, 84250A (2012)

    Article  Google Scholar 

  20. Banerjee, A.: Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals. Progr. Electromagn. Res. 89, 11–22 (2009)

    Article  Google Scholar 

  21. Aly, A.H., Ismaeel, M., Abdel-Rahman, E.: Comparative study of the one dimensional dielectric and metallic photonic crystals. Opt. Photonics J. 2, 105–112 (2012)

    Article  Google Scholar 

  22. Zare, Z., Gharaati, A.: Investigation of band gap width in ternary 1d photonic crystal with left-handed layer. ACTA Physica Polonica A 125, 36–38 (2014)

    Article  Google Scholar 

  23. Gharaati, A., Mohamadebrahimi, L., Roozitalab, Z.: Photonic band gap in negative ternary refractive indices of two-dimensional photonic crystal. Optica Applicata XLIV, 637–648 (2014)

    Google Scholar 

  24. Sharma, S., Kumar, R., Singh, K.S., Jain, D.: Design of an omnidirectional reflector using one dimensional ternary photonic crystal. Int. J. Eng. Tech. Res. 90–93 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romi Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Dey, R., Banerjee, M., Das, A., Deyasi, A. (2018). Effect of Incidence Angle on Optical Bandwidth in Ternary Photonic Crystal for Filter Application. In: Bhattacharyya, S., Sen, S., Dutta, M., Biswas, P., Chattopadhyay, H. (eds) Industry Interactive Innovations in Science, Engineering and Technology . Lecture Notes in Networks and Systems, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-10-3953-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3953-9_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3952-2

  • Online ISBN: 978-981-10-3953-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics