Skip to main content

Drying Kinetics in Solar Drying

  • Chapter
  • First Online:
Solar Drying Technology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

From ancient times foods such as fruit, vegetables, meat or fish were dried by direct sunlight. The use of the sun as energy source is advantageous from the economic as well as environmental points of view. However, this procedure has many disadvantages concerning the efficiency and product safety and quality. The use of greenhouses can greatly minimize these problems. Inside the greenhouses the air circulates by natural convection, but they can also be equipped with chimneys for air outlet, thus increasing the airflow. In other cases, the efficiency of the drying system can be increased by incorporating a solar collector system, which uses panels for an efficient collection of the sunray’s energy. Knowledge of the drying kinetics is of great importance for modelling the drying processes and to establish appropriate operating conditions. There are hundreds of mathematical models that were developed to represent the drying kinetics of foods, being mostly empirical or semiempirical or alternatively based on Fick’s second law of diffusion. This chapter presents the heat and mass transfer mechanisms that regulate the drying rate, the conditions in direct and indirect solar drying, the drying curves and the mathematical modelling of the solar drying processes, with application examples in various dominions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbulut A, Durmuş A (2009) Thin layer solar drying and mathematical modeling of mulberry. Int J Energy Res 33(7):687–695

    Article  Google Scholar 

  • Akin A, Gurlek G, Ozbalta N (2014) Mathematical model of solar drying characteristics for pepper (Capsicum Annuum). ISI Bilimi ve Teknigi Dergisi-J Therm Sci Technol 34(2):99–109

    Google Scholar 

  • Akpinar EK (2006) Mathematical modelling of thin layer drying process under open sun of some aromatic plants. J Food Eng 77(4):864–870

    Article  Google Scholar 

  • Akpinar EK (2008) Mathematical modelling and experimental investigation on sun and solar drying of white mulberry. J Mech Sci Technol 22(8):1544–1553

    Article  Google Scholar 

  • Akpinar EK (2010) Drying of mint leaves in a solar dryer and under open sun: modelling, performance analyses. Energy Convers Manag 51(12):2407–2418

    Article  Google Scholar 

  • Akpinar EK, Bicer Y (2008) Mathematical modelling of thin layer drying process of long green pepper in solar dryer and under open sun. Energy Convers Manag 49(6):1367–1375

    Article  Google Scholar 

  • Aktaş M, Ceylan İ, Yilmaz S (2009) Determination of drying characteristics of apples in a heat pump and solar dryer. Desalination 239(1–3):266–275

    Article  Google Scholar 

  • Apata ES, Osidibo OO, Apata OC, Okubanjo AO (2013) Effects of different solar drying methods on quality attributes of dried meat product (Kilishi). J Food Res 2(1):1–7

    Google Scholar 

  • Arslan D, Musa Özcan M (2010) Study the effect of sun, oven and microwave drying on quality of onion slices. LWT Food Sci Technol 43(7):1121–1127

    Article  Google Scholar 

  • Bagheri H, Arabhosseini A, Kianmehr MH, Chegini GR (2013) Mathematical modeling of thin layer solar drying of tomato slices. Agric Eng Int CIGR J 15(1):146–153

    Google Scholar 

  • Banout J, Ehl P, Havlik J, Lojka B, Polesny Z, Verner V (2011) Design and performance evaluation of a double-pass solar drier for drying of red chilli (Capsicum annuum L.) Sol Energy 85(3):506–515

    Article  Google Scholar 

  • Banout J, Kucerova I, Marek S (2012) Using a double-pass solar drier for jerky drying. Energy Procedia 30:738–744

    Article  Google Scholar 

  • Basri DF, Abu Bakar NF, Fudholi A, Ruslan MH, Saroeun I (2015) Comparison of selected metals content in cambodian striped snakehead fish (Channa striata) using solar drying system and open sun drying. J Environ Public Health 2015:1–6

    Article  Google Scholar 

  • Basunia MA, Abe T (2001) Thin-layer solar drying characteristics of rough rice under natural convection. J Food Eng 47(4):295–301

    Article  Google Scholar 

  • Bechoff A, Dufour D, Dhuique-Mayer C, Marouzé C, Reynes M, Westby A (2009) Effect of hot air, solar and sun drying treatments on provitamin A retention in orange-fleshed sweetpotato. J Food Eng 92(2):164–171

    Article  Google Scholar 

  • Borah A, Hazarika K, Khayer SM (2015a) Drying kinetics of whole and sliced turmeric rhizomes (Curcuma longa L.) in a solar conduction dryer. Inform Process Agric 2(2):85–92

    Google Scholar 

  • Borah A, Sethi L, Sarkar S, Hazarika K (2015b) Effect of drying on texture and color characteristics of ginger and turmeric in a solar biomass integrated dryer. J Food Process Eng n/a-n/a

    Google Scholar 

  • Brasiello A, Adiletta G, Russo P, Crescitelli S, Albanese D, Di Matteo M (2013) Mathematical modeling of eggplant drying: Shrinkage effect. J Food Eng 114(1):99–105

    Article  Google Scholar 

  • Brǎtucu G, Marin A, Florea C (2013) Research on carrot drying by means of solar energy. Bull Transilvania Univ Brasov II Forestry, Wood Industry, Agric Food Eng 6(1):91–98

    Google Scholar 

  • Çakmak G, Yıldız C (2011) The drying kinetics of seeded grape in solar dryer with PCM-based solar integrated collector. Food Bioprod Process 89(2):103–108

    Article  Google Scholar 

  • Carranza-Concha J, Benlloch M, Camacho MM, Martínez-Navarrete N (2012) Effects of drying and pretreatment on the nutritional and functional quality of raisins. Food Bioprod Process 90(2):243–248

    Article  Google Scholar 

  • Chin SK, Law CL, Supramaniam CV, Cheng PG, Mujumdar AS (2008) Convective drying of Ganoderma tsugae Murrill and effect of temperature on basidiospores. Dry Technol 26(12):1524–1533

    Article  Google Scholar 

  • Chouicha S, Boubekri A, Mennouche D, Berrbeuh MH (2013) Solar drying of sliced potatoes. An experimental investigation. Energy Procedia 36:1276–1285

    Article  Google Scholar 

  • Corzo O, Bracho N, Alvarez C (2008) Water effective diffusion coefficient of mango slices at different maturity stages during air drying. J Food Eng 87(4):479–484

    Article  Google Scholar 

  • Darvishi H, Azadbakht M, Rezaeiasl A, Farhang A (2013) Drying characteristics of sardine fish dried with microwave heating. J Saudi Soc Agric Sci 12(2):121–127

    Google Scholar 

  • Delgado T, Pereira JA, Baptista P, Casal S, Ramalhosa E (2014) Shell’s influence on drying kinetics, color and volumetric shrinkage of Castanea sativa Mill. fruits. Food Res Int 55:426–435

    Article  Google Scholar 

  • Deng Y, Wang Y, Yue J, Liu Z, Zheng Y, Qian B, Zhong Y, Zhao Y (2014) Thermal behavior, microstructure and protein quality of squid fillets dried by far-infrared assisted heat pump drying. Food Control 36(1):102–110

    Article  Google Scholar 

  • Dina SF, Ambarita H, Napitupulu FH, Kawai H (2015) Study on effectiveness of continuous solar dryer integrated with desiccant thermal storage for drying cocoa beans. Case Stud Therm Eng 5:32–40

    Article  Google Scholar 

  • Dissa AO, Bathiebo DJ, Desmorieux H, Coulibaly O, Koulidiati J (2011) Experimental characterisation and modelling of thin layer direct solar drying of Amelie and Brooks mangoes. Energy 36(5):2517–2527

    Article  Google Scholar 

  • Doymaz İ (2007) The kinetics of forced convective air-drying of pumpkin slices. J Food Eng 79(1):243–248

    Article  Google Scholar 

  • Doymaz I (2011) Drying of green bean and okra under solar energy. Chem Ind Chem Eng Q 17(2):199–205

    Article  Google Scholar 

  • Ekechukwu OV, Norton B (1999) Review of solar-energy drying systems II: an overview of solar drying technology. Energy Convers Manag 46(6):615–655

    Article  Google Scholar 

  • Ekıncı R (2005) The effect of fermentation and drying on the water-soluble vitamin content of tarhana, a traditional Turkish cereal food. Food Chem 90(1–2):127–132

    Article  Google Scholar 

  • El-Beltagy A, Gamea GR, Essa AHA (2007) Solar drying characteristics of strawberry. J Food Eng 78(2):456–464

    Article  Google Scholar 

  • El-Sebaii AA, Shalaby SM (2013) Experimental investigation of an indirect-mode forced convection solar dryer for drying thymus and mint. Energy Convers Manag 74:109–116

    Article  Google Scholar 

  • Erbay Z, Icier F (2010) A review of thin layer drying of foods: theory, modeling, and experimental results. Crit Rev Food Sci Nutr 50(5):441–464

    Article  Google Scholar 

  • Fadhel M, Abdo R, Yousif B, Zaharim A, Sopian K (2011) Thin layer drying characteristics of banana slices in a forced convection indirect solar drying. Proceedings paper presented at the 6th IASME/WSEAS International Conference on Energy and Environment (EE 2011): Recent Researches in Energy and Environment. Cambridge, United Kingdom

    Google Scholar 

  • Faustino JMF, Barroca MJ, Guiné RPF (2007) Study of the drying kinetics of green bell pepper and chemical characterization. Food Bioprod Process 85(3):163–170

    Article  Google Scholar 

  • Fudholi A, Othman MY, Ruslan MH, Sopian K (2013) Drying of Malaysian Capsicum annuum L. (Red Chili) dried by open and solar drying. Int Journal of Photoenergy 2013 Article ID: 167895:1–9

    Google Scholar 

  • Fudholi A, Sopian K, Othman MY, Ruslan MH (2014) Energy and exergy analyses of solar drying system of red seaweed. Energ Buildings 68:121–129

    Article  Google Scholar 

  • Ghazanfari A, Tabil L, Sokhansanj S (2003) Evaluating a solar dryer for shell drying of split pistachio nuts. Dry Technol 21:1357–1368

    Article  Google Scholar 

  • Guiné RPF (2005a) Drying kinetics of some varieties of pears produced in Portugal. Food Bioprod Process 83(4):273–276

    Article  Google Scholar 

  • Guiné RPF (2005b) Variation of density and porosity during the drying of pears and pear halves. Braz J Food Technol 8(1):252–255

    Google Scholar 

  • Guiné RPF (2008) Pear drying: experimental validation of a mathematical prediction model. Food Bioprod Process 86(4):248–253

    Article  Google Scholar 

  • Guiné R (2010) Analysis of the drying kinetics of S. Bartolomeu pears for different drying systems. Elec J Environ Agric Food Chem 9(11):1772–1783

    Google Scholar 

  • Guiné RPF, Barroca MJ (2012) Effect of drying treatments on texture and color of vegetables (pumpkin and green pepper). Food Bioprod Process 90(1):58–63

    Article  Google Scholar 

  • Guiné R, Gonçalves F (2015) Chemistry and health effects of bioactive compounds in selected culinary aromatic herbs. Curr Nutr Food Sci 12(2):145–164

    Article  Google Scholar 

  • Guiné R, Gonçalves F (2016) Bioactive compounds in some culinary aromatic herbs and their effects on human health. Mini-Rev Med Chem 16(11):855–866

    Article  Google Scholar 

  • Guiné RPF, Ramos MA, Figueiredo M (2006) Shrinkage Characteristics and Porosity of Pears during Drying. Dry Technol 24(11):1525–1530

    Article  Google Scholar 

  • Guiné RPF, Rodrigues AE, Figueiredo MM (2007a) Modelling and simulation of pear drying. Appl Math Comput 192(1):69–77

    Google Scholar 

  • Guiné RPF, Ferreira DMS, Barroca MJ, Gonçalves FM (2007b) Study of the solar drying of pears. Int J Fruit Sci 7(2):101–118

    Article  Google Scholar 

  • Guiné RPF, Ferreira DMS, Barroca MJ, Gonçalves FM (2007c) Study of the drying kinetics of solar-dried pears. Biosyst Eng 98(4):422–429

    Article  Google Scholar 

  • Guiné RPF, Lopes P, Barroca M, Ferreira DMS (2009) Effect of ripening stage on the solar drying kinetics and properties of s. Bartolomeu pears (Pyrus communis L.) Int J Acad Res 1(1):46–52

    Google Scholar 

  • Guiné RPF, Pinho S, Barroca MJ (2011) Study of the convective drying of pumpkin (Cucurbita maxima). Food Bioprod Process 89(4):422–428

    Article  Google Scholar 

  • Gulcimen F, Karakaya H, Durmus A (2016) Drying of sweet basil with solar air collectors. Renew Energy 93:77–86

    Article  Google Scholar 

  • Gupta P, Ahmed J, Shivhare US, Raghavan GSV (2002) Drying characteristics of red chilli. Dry Technol 20(10):1975–1987

    Article  Google Scholar 

  • Gurlek G, Ozbalta N, Gungor A (2009) Solar tunnel drying characteristics and mathematical modelling of tomato. ISI Bilimi ve Teknigi Dergisi-J Therm Sci Technol 29(1):15–23

    Google Scholar 

  • Haque MA, Aldred P, Chen J, Barrow CJ, Adhikari B (2013) Comparative study of denaturation of whey protein isolate (WPI) in convective air drying and isothermal heat treatment processes. Food Chem 141(2):702–711

    Article  Google Scholar 

  • Hassanain AA (2011) Drying sage (Salvia officinalis L.) in passive solar dryers. Res Agric Eng 50(1):19–29

    Google Scholar 

  • Henderson SM (1974) Progress in developing the thin layer drying equation. Trans Am Soc Agric Eng 17:1167–1168

    Article  Google Scholar 

  • Henderson SM, Pabis S (1969) Grain drying theory. I Temperature effect on drying coefficient. J Agric Eng Res 6:169–174

    Google Scholar 

  • Hossain MA, Amer BMA, Gottschalk K (2008) Hybrid solar dryer for quality dried tomato. Dry Technol 26(12):1591–1601

    Article  Google Scholar 

  • Igual M, García-Martínez E, Martín-Esparza ME, Martínez-Navarrete N (2012) Effect of processing on the drying kinetics and functional value of dried apricot. Food Res Int 47(2):284–290

    Article  Google Scholar 

  • Ikutegbe V, Sikoki F (2014) Microbiological and biochemical spoilage of smoke-dried fishes sold in West African open markets. Food Chem 161:332–336

    Article  Google Scholar 

  • Irigoyen TRM, Giner SA (2014) Drying-toasting kinetics of presoaked soybean in fluidised bed. Experimental study and mathematical modelling with analytical solutions. J Food Eng 128:31–39

    Article  Google Scholar 

  • Jadhav D, Annapure U, Visavale GI, Sutar N, Thorat B (2010) Studies on solar cabinet drying of green peas (Pisum sativum). Dry Technol 28(5):600–607

    Article  Google Scholar 

  • Janjai S, Lamlert N, Intawee P, Mahayothee B, Bala BK, Nagle M, Müller J (2009) Experimental and simulated performance of a PV-ventilated solar greenhouse dryer for drying of peeled longan and banana. Sol Energy 83(9):1550–1565

    Article  Google Scholar 

  • Kassem AS (1998) Comparative studies on thin layer drying models for wheat. Proceeding of 13th International congress on agricultural engineering. Morocco, 2–6

    Google Scholar 

  • Kaya A, Aydın O, Kolaylı S (2010) Effect of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia deliciosa Planch). Food Bioprod Process 88(2–3):165–173

    Article  Google Scholar 

  • Kituu GM, Shitanda D, Kanali CL, Mailutha JT, Njoroge CK, Wainaina JK, Silayo VK (2010) Thin layer drying model for simulating the drying of Tilapia fish (Oreochromis niloticus) in a solar tunnel dryer. J Food Eng 98(3):325–331

    Article  Google Scholar 

  • Koç B, Eren İ, Kaymak Ertekin F (2008) Modelling bulk density, porosity and shrinkage of quince during drying: the effect of drying method. J Food Eng 85(3):340–349

    Article  Google Scholar 

  • Kouchakzadeh A (2013) The effect of acoustic and solar energy on drying process of pistachios. Energy Convers Manag 67:351–356

    Article  Google Scholar 

  • Kowalski SJ, Szadzińska J, Łechtańska J (2013) Non-stationary drying of carrot: effect on product quality. J Food Eng 118(4):393–399

    Article  Google Scholar 

  • Kucerova I, Hubackova A, Rohlik B-A, Banout J (2015) Mathematical modeling of thin-layer solar drying of Eland (Taurotragus oryx) Jerky. Int J Food Eng 11(2):229–242

    Google Scholar 

  • Kucuk H, Midilli A, Kilic A, Dincer I (2014) A review on thin-layer drying-curve equations. Dry Technol 32(7):757–773

    Article  Google Scholar 

  • Kumar A, Singh M, Singh G (2013) Effect of different pretreatments on the quality of mushrooms during solar drying. J Food Sci Technol 50(1):165–170

    Article  Google Scholar 

  • Kumar C, Karim MA, Joardder MUH (2014) Intermittent drying of food products: A critical review. J Food Eng 121:48–57

    Article  Google Scholar 

  • Kumar M, Sansaniwal SK, Khatak P (2016) Progress in solar dryers for drying various commodities. Renew Sust Energ Rev 55:346–360

    Article  Google Scholar 

  • Kurozawa LE, Terng I, Hubinger MD, Park KJ (2014) Ascorbic acid degradation of papaya during drying: effect of process conditions and glass transition phenomenon. J Food Eng 123:157–164

    Article  Google Scholar 

  • Labed A, Moummi N, Aoues K, Benchabane A (2016) Solar drying of henna (Lawsonia inermis) using different models of solar flat plate collectors: an experimental investigation in the region of Biskra (Algeria). J Clean Prod 112(Part 4):2545–2552

    Article  Google Scholar 

  • Lahnine L, Idlimam A, Mahrouz M, Mghazli S, Hidar N, Hanine H, Koutit A (2016) Thermophysical characterization by solar convective drying of thyme conserved by an innovative thermal-biochemical process. Renew Energy 94:72–80

    Article  Google Scholar 

  • Lahsasni S, Kouhila M, Mahrouz M, Idlimam A, Jamali A (2004) Thin layer convective solar drying and mathematical modeling of prickly pear peel (Opuntia ficus indica). Energy 29(2):211–224

    Article  Google Scholar 

  • Lewis (1921) The drying of solid materials. J Indian Eng 5:427–443

    Google Scholar 

  • Lopez R, Vaca M, Terres H, Lizardi A, Morales J, Flores J, Lara A and Chávez S (2014) Kinetics modeling of the drying of chickpea (Cicer Arietinum) with solar energy. Energy Procedia: 2013 I.E. Solar World Congress 57:1447–1454

    Google Scholar 

  • Lorentzen G, Egeness F-A, Pleym IE, Ytterstad E (2016) Shelf life of packaged loins of dried salt-cured cod (Gadus morhua L.) stored at elevated temperatures. Food Control 64:65–69

    Article  Google Scholar 

  • McMinn WAN (2006) Thin-layer modeling of the convective, microwave, microwave-convective and microwave-vacuum drying of lactose powder. J Food Eng 72:113–123

    Article  Google Scholar 

  • Mendonça AP, de Sampaio PTB, de Almeida FAC, Ferreira RF, Novais JM (2015) Determinação das curvas de secagem das sementes de andiroba em secador solar. Revista Brasileira de Engenharia Agrícola e Ambiental 19(4):382–387

    Article  Google Scholar 

  • Mennouche D, Bouchekima B, Boubekri A, Boughali S, Bouguettaia H, Bechki D (2014) Valorization of rehydrated Deglet-Nour dates by an experimental investigation of solar drying processing method. Energy Convers Manag 84:481–487

    Article  Google Scholar 

  • Midilli A, Kucuk H (2003) Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Convers Manag 44(7):1111–1122

    Article  Google Scholar 

  • Midilli A, Kucuk H, Yapar Z (2002) A new model for single-layer drying. Dry Technol 20(7):1503–1513

    Article  Google Scholar 

  • Morales-Medina R, Tamm F, Guadix AM, Guadix EM, Drusch S (2016) Functional and antioxidant properties of hydrolysates of sardine (S. pilchardus) and horse mackerel (T. mediterraneus) for the microencapsulation of fish oil by spray-drying. Food Chem 194:1208–1216

    Article  Google Scholar 

  • Mrad ND, Boudhrioua N, Kechaou N, Courtois F, Bonazzi C (2012) Influence of air drying temperature on kinetics, physicochemical properties, total phenolic content and ascorbic acid of pears. Food Bioprod Process 90(3):433–441

    Article  Google Scholar 

  • Mulokozi G, Svanberg U (2003) Effect of traditional open sun-drying and solar cabinet drying on carotene content and vitamin A activity of green leafy vegetables. Plant Foods Hum Nutr 58(3):1–15

    Article  Google Scholar 

  • Mustayen AGMB, Rahman MM, Mekhilef S, Saidur R (2015) Performance evaluation of a solar powered air dryer for white oyster mushroom drying. Int J Green Energy 12(11):1113–1121

    Article  Google Scholar 

  • Niamnuy C, Devahastin S, Soponronnarit S (2014) Some recent advances in microstructural modification and monitoring of foods during drying: a review. J Food Eng 123:148–156

    Article  Google Scholar 

  • Nourhène B, Mohammed K, Nabil K (2008) Experimental and mathematical investigations of convective solar drying of four varieties of olive leaves. Food Bioprod Process 86(3):176–184

    Article  Google Scholar 

  • Nuwanthi SGLI, Madage SSK, Hewajulige IGN, Wijesekera RGS (2016) Comparative study on organoleptic, microbiological and chemical qualities of dried fish, Goldstripe Sardinella(Sardinella Gibbosa) with low salt levels and spices. Procedia Food Sci 6:356–361

    Article  Google Scholar 

  • Odjo S, Malumba P, Dossou J, Janas S, Béra F (2012) Influence of drying and hydrothermal treatment of corn on the denaturation of salt-soluble proteins and color parameters. J Food Eng 109(3):561–570

    Article  Google Scholar 

  • Ojutiku RO, Kolo RJ, Mohammed ML (2009) Comparative study of sun drying and solar tent drying of Hyperopisus bebe occidentalis. Pak J Nutr 8(7):955–957

    Article  Google Scholar 

  • Overhults DD, White GM, Hamilton ME, Ross IJ (1973) Drying soybeans with heated air. Trans Am Soc Agric Eng 16:195–200

    Article  Google Scholar 

  • Page GE (1949) Factors influencing the maximum rates of air drying shelled corn in thin layers. Purdue University, Lafayette, IN, USA

    Google Scholar 

  • Panwar NL (2014) Experimental investigation on energy and exergy analysis of coriander (Coriandrum sativum L.) leaves drying in natural convection solar dryer. Appl Solar Energy 50(3):133–137

    Article  Google Scholar 

  • Parikh D, Agrawal GD (2012) Solar drying in hot and dry climate of Jaipur. Int J Renew Energy Res (IJRER) 1(4):224–231

    Google Scholar 

  • Patil R, Gawande R (2016) A review on solar tunnel greenhouse drying system. Renew Sust Energ Rev 56:196–214

    Article  Google Scholar 

  • Pirasteh G, Saidur R, Rahman SMA, Rahim NA (2014) A review on development of solar drying applications. Renew Sust Energ Rev 31:133–148

    Article  Google Scholar 

  • Puig A, Perez-Munuera I, Carcel JA, Hernando I, Garcia-Perez JV (2012) Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L.) during conventional and ultrasonically assisted convective drying. Food Bioprod Process 90(4):624–632

    Article  Google Scholar 

  • Rahman MM, Mekhilef S, Saidur R, Billah AGMM, Rahman SMA (2016) Mathematical modelling and experimental validation of solar drying of mushrooms. Int J Green Energy 13(4):344–351

    Article  Google Scholar 

  • Rankins J, Sathe SK, Spicer MT (2008) Solar drying of mangoes: preservation of an important source of vitamin A in french-speaking West Africa. J Am Diet Assoc 108(6):986–990

    Article  Google Scholar 

  • Reyes A, Mahn A, Vásquez F (2014) Mushrooms dehydration in a hybrid-solar dryer, using a phase change material. Energy Convers Manag 83:241–248

    Article  Google Scholar 

  • Ringeisen BM, Barrett D, Stroeve P (2014) Concentrated solar drying of tomatoes. Energy Sustain Dev 19:47–55

    Article  Google Scholar 

  • Rodríguez J, Mulet A, Bon J (2014) Influence of high-intensity ultrasound on drying kinetics in fixed beds of high porosity. J Food Eng 127:93–102

    Article  Google Scholar 

  • Ronoh EK, Kanali CL, Mailutha JT, Shitanda D (2009) Modeling thin layer drying of amaranth seeds under open sun and natural convection solar tent dryer. Agric Eng Int CIGR J 11:1420

    Google Scholar 

  • Sacilik K, Keskin R, Elicin AK (2006) Mathematical modelling of solar tunnel drying of thin layer organic tomato. J Food Eng 73(3):231–238

    Article  Google Scholar 

  • Saeed IE (2010) Solar drying of roselle (Hibiscus sabdariffa L.): effects of drying conditions on the drying constant and coefficients, and validation of the logarithmic model. Agric Eng Int CIGR J 12(1):167–181

    Google Scholar 

  • Sahin S, Sumnu G, Tunaboyu F (2013) Usage of solar-assisted spouted bed drier in drying of pea. Food Bioprod Process 91:271–278

    Article  Google Scholar 

  • Saleh A, Badran I (2009) Modeling and experimental studies on a domestic solar dryer. Renew Energy 34(10):2239–2245

    Article  Google Scholar 

  • Sallam YI, Aly MH, Nassar AF, Mohamed EA (2015) Solar drying of whole mint plant under natural and forced convection. J Adv Res 6(2):171–178

    Article  Google Scholar 

  • Schössler K, Thomas T, Knorr D (2012) Modification of cell structure and mass transfer in potato tissue by contact ultrasound. Food Res Int 49(1):425–431

    Article  Google Scholar 

  • Seveda MS, Jhajharia D (2012) Design and performance evaluation of solar dryer for drying of large cardamom (Amomum subulatum). J Renew Sustain Energy 4(6):63–129

    Article  Google Scholar 

  • Sharaf-Elden YI, Blaisdell JL, Hamdy MY (1980) A model for ear corn drying. Trans Am Soc Agric Eng 5:1261–1265

    Article  Google Scholar 

  • Sharma VK, Sharma S, Garg HP (1991) Mathematical modelling and experimental evaluation of a natural convection type solar cabinet dryer. Energy Convers Manag 31(1):65–73

    Article  Google Scholar 

  • Sharma A, Chen CR, Vu Lan N (2009) Solar-energy drying systems: a review. Renew Sust Energ Rev 13(6–7):1185–1210

    Article  Google Scholar 

  • Shringi V, Kothari S, Panwar NL (2014) Experimental investigation of drying of garlic clove in solar dryer using phase change material as energy storage. J Therm Anal Calorim 118(1):533–539

    Article  Google Scholar 

  • Singh SP, Jairaj KS, Srikant K (2012) Universal drying rate constant of seedless grapes: A review. Renew Sust Energ Rev 16(8):6295–6302

    Article  Google Scholar 

  • Solval KM, Sundararajan S, Alfaro L, Sathivel S (2012) Development of cantaloupe (Cucumis melo) juice powders using spray drying technology. LWT Food Sci Technol 46(1):287–293

    Article  Google Scholar 

  • Sunil, Varun, Sharma N (2014) Experimental investigation of the performance of an indirect-mode natural convection solar dryer for drying fenugreek leaves. J Therm Anal Calorim 118(1):523–531

    Article  Google Scholar 

  • Sunil, Varun, Sharma N (2013) Modelling the drying kinetics of green peas in a solar dryer and under open sun. Int J Energy Environ 4(4):663–676

    Google Scholar 

  • Suzuki H, Hayakawa S, Wada S, Okazaki E, Yamazawa M (1988) Effect of solar drying on vitamin D3 and provitamin D3 contents in fish meat. J Agric Food Chem 36(4):803–806

    Article  Google Scholar 

  • Timoumi S, Mihoubi D, Zagrouba F (2007) Shrinkage, vitamin C degradation and aroma losses during infra-red drying of apple slices. LWT Food Sci Technol 40(9):1648–1654

    Article  Google Scholar 

  • Toğrul İT, Pehlivan D (2004) Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. J Food Eng 65(3):413–425

    Article  Google Scholar 

  • Traffano-Schiffo MV, Castro-Giráldez M, Fito PJ, Balaguer N (2014) Thermodynamic model of meat drying by infrared thermography. J Food Eng 128:103–110

    Article  Google Scholar 

  • Tripathy PP (2015) Investigation into solar drying of potato: effect of sample geometry on drying kinetics and CO2 emissions mitigation. J Food Sci Technol 52(3):1383–1393

    Article  Google Scholar 

  • Tripathy PP, Kumar S (2009) A methodology for determination of temperature dependent mass transfer coefficients from drying kinetics: application to solar drying. J Food Eng 90(2):212–218

    Article  Google Scholar 

  • Vega-Gálvez A, Ah-Hen K, Chacana M, Vergara J, Martínez-Monzó J, García-Segovia P, Lemus-Mondaca R, Di Scala K (2012) Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chem 132(1):51–59

    Article  Google Scholar 

  • Verma LR, Bucklin RA, Endan JB, Wratten FT (1985) Effects of drying air parameters on rice drying models. Trans Am Soc Agric Eng 28:296–301

    Article  Google Scholar 

  • Vijayan S, Arjunan TV, Kumar A (2016) Mathematical modeling and performance analysis of thin layer drying of bitter gourd in sensible storage based indirect solar dryer. Innovative Food Sci Emerg Technol 36:59–67

    Article  Google Scholar 

  • Wang CY, Singh RP (1978) A single layer drying equation for rough rice. Am Soc Agric Eng (3001)

    Google Scholar 

  • Wongpornchai S, Dumri K, Jongkaewwattana S, Siri B (2004) Effects of drying methods and storage time on the aroma and milling quality of rice (Oryza sativa L.) cv. Khao Dawk Mali 105. Food Chem 87(3):407–414

    Article  Google Scholar 

  • Wu L, Orikasa T, Ogawa Y, Tagawa A (2007) Vacuum drying characteristics of eggplants. J Food Eng 83(3):422–429

    Article  Google Scholar 

  • Yagcioglu A, Degirmencioglu A, Cagatay F (1999) Drying characteristics of laurel leaves under different drying conditions. Proceedings of the 7th International Congress on Agricultural Mechanization and Energy in Agriculture. Adana, Turkey, 565–569

    Google Scholar 

  • Yaldiz O, Ertekin C, Uzun HI (2001) Mathematical modeling of thin layer solar drying of sultana grapes. Energy 26(5):457–465

    Article  Google Scholar 

  • Zhang L, Nishizu T, Kishigami H, Kato A, Goto K (2013) Measurement of internal shrinkage distribution in spaghetti during drying by X-ray μCT. Food Res Int 51(1):180–187

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel de Pinho Ferreira Guiné .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

de Pinho Ferreira Guiné, R., Barroca, M.J. (2017). Drying Kinetics in Solar Drying. In: Prakash, O., Kumar, A. (eds) Solar Drying Technology. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3833-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3833-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3832-7

  • Online ISBN: 978-981-10-3833-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics