Skip to main content

Models of Active Bulk Composites and New Opportunities of the ACELAN Finite Element Package

  • Chapter
  • First Online:
Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 59))

Abstract

The chapter presents the mathematical models for thermopiezomagnetoelectric composite materials of an arbitrary anisotropy classes for computer engineering finite element package ACELAN. These homogenization models are based on the method of effective moduli with different boundary conditions, the approaches for generation of representative volumes with specified properties and the finite element method. Important features of ACELAN package also include the original models of irreversible processes of polarization and repolarization for polycrystalline ferroelectric materials. In this paper the software architecture of ACELAN package and its ability for creation of representative volumes with different structures are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Belokon, A.V., Nasedkin, A.V., Soloviev, A.N.: New schemes for the finite-element dynamic analysis of piezoelectric devices. J. Appl. Math. Mech. (PMM) 66(3), 481–490 (2002)

    Article  Google Scholar 

  2. Belokon, A.V., Skaliuh, A.S.: Mathematical modeling of irreversible processes of polarization. M., FIZMATLIT, 1–328 (2010) (Russian edition)

    Google Scholar 

  3. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numerica 14, 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benzi, M., Wathen, A.J.: Some preconditioning techniques for saddle point problems. In: Schilders, W.H.A., van der Vorst, H.A., Rommes, J. (eds.) Model Order Reduction: Theory, Research Aspects and Applications. Mathematics in Industry, vol. 13, pp. 195–211

    Google Scholar 

  5. Berlincourt, D.A., Curran, D.R., Jaffe, H.: Piezoelectric and piezomagnetic materials. In: Physical Acoustics, Part A, vol. 1. Academic Press, NY, pp. 233–256 (1964)

    Google Scholar 

  6. Challagulla, K.S., Georgiades, A.V.: Micromechanical analysis of magneto-electro-thermo-elastic composite materials with applications to multilayered structures. Int. J. Eng. Sci. 49, 85–104 (2011)

    Article  Google Scholar 

  7. Lee, J., Boyd, J.G., Lagoudas, D.C.: Effective properties of three-phase electro-magneto-elastic composites. Int. J. Eng. Sci. 43, 790–825 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, J.Y.: Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials. Int. J. Eng. Sci. 38, 1993–2011 (2000)

    Article  Google Scholar 

  9. Hadjiloizi, A.D., Georgiades, A.V., Kalamkarov, A.V., Jothi, S.: Micromechanical modeling of piezo-magneto-thermo-elastic composite structures: part I-Theory. Eur. J. Mech. A-Solids 39, 298–312 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hadjiloizi, D.A., Georgiades, A.V., Kalamkarov, A.L., Jothi, S.: Micromechanical modeling of piezo-magneto-thermo-elastic composite structures: Part II–Applications. Eur. J. Mech. A-Solids 39, 313–327 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nan, C.-W., Bichurin, M.I., Dong, S., Viehland, D., Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101–1–35 (2008)

    Google Scholar 

  12. Nasedkin, A.V.: Some finite element methods and algorithms for solving acousto-piezoelectric problems. In: Parinov, I.A. (ed.) Piezoceramic Materials and Devices, pp. 177–218. Nova Science Publishers, New York (2010)

    Google Scholar 

  13. Nasedkin, A.V.: Modeling of magnetoelectric composites by effective moduli and finite element methods. Theoretical approaches. Ferroelectrics. 461(1), 106–112 (2014)

    Article  Google Scholar 

  14. Nasedkin, A.V.: Multiscale computer design of piezomagnetoelectric mixture composite structures. AIP Conf. Proc. 1627, 64–69 (2014)

    Article  Google Scholar 

  15. Nasedkin, A.V.: Finite element design of piezoelectric and magnetoelectric composites by using symmetric saddle algorithms. In: Parinov, I.A., Chang, S.-H., Theerakulpisut, S. (eds.) Advanced Materials-Studies and Applications, pp. 109–124. Nova Science Publishers, New York (2015)

    Google Scholar 

  16. Nasedkin, A.V., Eremeyev, V.A.: Modeling of nanosized piezoelectric and magnetoelectric bodies with surface effects. AIP Conf. Proc. 1627, 70–75 (2014)

    Article  MATH  Google Scholar 

  17. Nasedkin, A.V., Eremeyev, V.A.: Some models for nanosized magnetoelectric bodies with surface effects. In: Parinov, I.A., Chang, S.-H., Topolov, V.Y. (eds.) Advanced Materials-Manufacturing, Physics, Mechanics and Applications, Series “Springer Proceedings in Physics, vol. 175, pp. 373–391. Springer, Heidelberg, New York, Dordrecht, London (2016)

    Google Scholar 

  18. Nasedkin, A.V., Nasedkina, A.A.: Finite element modeling and computer design of porous composites. In: Hellmich, C., Pichler, B., Adam, D. (eds.) Poromechanics V. Proceedings of the Fifth Biot Conference on Poromechanics, pp. 608–617, 10–12 July 2013, Vienna, Austria. Publ. ASCE (2013)

    Google Scholar 

  19. Nasedkin, A.V., Shevtsova, M.S.: Improved finite element approaches for modeling of porous piezocomposite materials with different connectivity. In: Parinov, I.A. (ed.) Ferroelectrics and Superconductors: Properties and Applications, pp. 231–254. Nova Science Publishers, New York (2011)

    Google Scholar 

  20. Nasedkin, A., Skaliukh, A., Soloviev, A.: New models of coupled active materials for finite element package ACELAN. AIP Conf. Proc. 1637, 714–723 (2014)

    Article  Google Scholar 

  21. Rybyanets, A.N.: Ceramic piezocomposites: modeling, technology, characterization. In: Parinov, I.A. (ed.) Piezoceramic Materials and Devices, pp. 115–174. Nova Science Publishers, New York (2010)

    Google Scholar 

  22. Rybyanets, A.N.: Porous piezoeramics: theory, technology, and properties. IEEE Trans. UFFC. 58, 1492–1507 (2011)

    Article  Google Scholar 

  23. Skaliukh, A.S.: Modeling of polarisation of the polycrystilline ferroelectrics. In: Parinov, I.A. (ed.) Piezoelectric materials and devices, pp. 50–102. Nova Science Publishers, New York (2012)

    Google Scholar 

  24. Skaliukh, A.S., Soloviev, A.N., Oganesyan, P.A.: Modeling of piezoelectric elements with inhomogeneous polarization in ACELAN. Ferroelectrics 483(1), 95–101 (2015)

    Article  Google Scholar 

  25. Soloviev, A.N., Oganesyan, P.A., Skaliukh, A.S.: Modeling of piezoelectric elements with inhomogeneous polarization by using ACELAN. In: Parinov, I.A., Chang, S.-H., Theerakulpisut, S. (eds.) Advanced Materials-Studies and Applications, pp. 169–192. Nova Science Publishers, New York (2015)

    Google Scholar 

  26. Tang, T., Yu, W.: Variational asymptotic homogenization of heterogeneous electromagnetoelastic materials. Int. J. Eng. Sci. 46, 741–757 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Topolov, V.Yu., Bowen, C.R.: Electromechanical Properties in Composites Based on Ferroelectrics, pp. 1–202. Springer, London (2009)

    Google Scholar 

  28. Vanderbei, R.J.: Symmetric quasidefinite matrices. SIAM J. Optim. 5, 100–113 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, Z.K., Soh, A.K.: Micromechanics predictions of the effective moduli of magnetoelectroelastic composite materials. Eur. J. Mech. A-Solids 24, 1054–1067 (2005)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The investigations on the development of homogenization models for active composite materials have been carried by A. Nasedkin with the support of the Russian Scientific Foundation (RSCF) by Project 15-19-10008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Soloviev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kurbatova, N.V. et al. (2017). Models of Active Bulk Composites and New Opportunities of the ACELAN Finite Element Package. In: Sumbatyan, M. (eds) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials . Advanced Structured Materials, vol 59. Springer, Singapore. https://doi.org/10.1007/978-981-10-3797-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3797-9_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3796-2

  • Online ISBN: 978-981-10-3797-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics