Skip to main content

The Sperm

  • Chapter
  • First Online:
Basics of Human Andrology

Abstract

Structure of the sperm

Strict criteria of normal sperm morphology

Post-testicular maturation

 Epididymal maturation

 Capacitation

Functional attributes of the sperm

 Motility

 Fertilization

 Egg activation

Sperm or spermatozoon is a specialized cell with potential function of transferring paternal genome into the egg. Sperm is formed by process of cell division and maturation starting from spermatogonial stage, progressing to primary spermatocyte, secondary spermatocyte, spermatid, and mature sperm.

The structural components of sperm correspond with its highly specialized functions. The first ever detailed description of sperm was given by Antoni van Leeuwenhoek in 1677. Sperm consists of the head and flagellum joined by a connecting piece or neck. The head consists of nucleus and acrosome (see Fig. 12.1). Nucleus contains paternal genome. Acrosome is enzyme-filled cap covering the anterior part of the sperm head. Acrosomal enzymes facilitate fertilization. The flagellum is the storehouse of energy needed for sperm motility. The structural uniqueness of sperm is due to the presence of unique proteins such as nuclear packaging proteins, cytoskeleton proteins in the head, acrosomal proteins, and flagellar proteins. Sperm undergoes various structural modifications in the testis and epididymis as well as during its journey to the egg/oocyte through female reproductive tract. The structural modifications make sperm capable of surviving in female reproductive tract, reaching the egg vestments, and penetrating and fertilizing the egg.

We shall now describe the detailed structure and functional attributes of the sperm. The structural and functional details are based on various animal studies and few studies done on human sperm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarabi M, Qin Z, Xu W, Mewburn J, Oko R. Sperm borne protein PAWP, initiates zygotic development in Xenopus laevis by eliciting intracellular calcium release. Mol Reprod Dev. 2010;77:249–56.

    CAS  PubMed  Google Scholar 

  • Abou-haila A, Tulsiani DR. Signal transduction pathways that regulate sperm capacitation and th acrosome reaction. Arch Biochem Biophys. 2009;485:72–81.

    Article  CAS  PubMed  Google Scholar 

  • Abraham-Peskir JV, Chantler E, Uggerhoj E, Fedder J. Response of midpiece vesicles on human sperm to osmotic stress. Hum Reprod. 2002;17:375–82.

    Article  PubMed  Google Scholar 

  • Aderem A. Signal transduction and actin cytoskeleton: the roles of MARCKS and profiling. Trends Biochem Sci. 1992;17:438–43.

    Article  CAS  PubMed  Google Scholar 

  • Adham IM, Nayernia K, Engel W. Spermatozoa lacking acrosin protein show delayed fertilization. Mol Reprod Dev. 1997;46:370–6.

    Article  CAS  PubMed  Google Scholar 

  • Anakwe OO, Gerton GL. Acrosome biogenesis during meiosis: evidence from the synthesis and distribution of an acrosomal glycoprotein, acrogranin, during guinea pig spermatogenesis. Biol Reprod. 1990;42:317–28.

    Article  CAS  PubMed  Google Scholar 

  • Ånberg Å. The ultrastructure of the spermatozoon. An electronmicroscopic study of the spermatozoa from sperm samples and the epididymis including some observations of the spermatid. Acta Obstet Gynecol Scand. 1957;36(2):1–133.

    Google Scholar 

  • Arienti G, Saccardi C, Carlini E, Verdacchi R, Palmerini CA. Distribution of lipid and protein in human semen fractions. Clin Chim Acta. 1999;289:111–20.

    Article  CAS  PubMed  Google Scholar 

  • Arnoult C, Kazam IG, Visconti PE, Kopf GS, Villaz M, Florman HM. Control of the low voltage-activated calcium channel of mouse sperm by egg ZP3 and by membrane hyperpolarization during capacitation. Proc Natl Acad Sci U S A. 1999;96:6757–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baccetti B. The human spermatozoon. In: Van Blerkom J, Motta PM, editors. Ultrastructure of reproduction. The Hague: Martinus Nijhoff; 1984. p. 110–26.

    Chapter  Google Scholar 

  • Baccetti B, Pallini V, Burrini AG. The accessory fibers of the sperm tail. II: their role in binding zinc in mammals and cephalopods. J Ultrastruct Res. 1976;54:261–75.

    Article  CAS  PubMed  Google Scholar 

  • Baltz JM, Williams PO, Cone RA. Dense fibers protect mammalian sperm against damage. Biol Reprod. 1990;43:485–91.

    Article  CAS  PubMed  Google Scholar 

  • Bartoov B, Berkovitz A, Eltes F. Selection of spermatozoa with normal nuclei to improve the pregnancy rate with intracytoplasmic sperm injection. N Engl J Med. 2001;345:1067–8.

    Article  CAS  PubMed  Google Scholar 

  • Bartoov B, Berkovitz A, Eltes F, Kogosowski A, Menezo Y, Barak Y. Real-time fine morphology of motile human sperm cells is associated with IVF-ICSI outcome. J Androl. 2002;23:1–8.

    Article  PubMed  Google Scholar 

  • Bedford JM. Maturation, transport and fate of spermatozoa in the epididymis. In: Greep RO, editor. Endocrinology, male reproductive system, Handbook of Physiology, Section 7, Vol. 5. Washington, DC: American Physiological Society; 1975. p. 303–17.

    Google Scholar 

  • Blackmore PF, Neulen J, Lattanzio F, Beebe SJ. Cell surface-binding sites for progesterone mediate calcium uptake in human sperm. J Bio Chem. 1991;266:18655–9.

    CAS  Google Scholar 

  • Bleil JD, Wassarman PM. Structure and function of the zona pellucida: identification and characterization of the proteins of the mouse oocyte’s zona pellucida. Dev Biol. 1980;76:185–202.

    Article  CAS  PubMed  Google Scholar 

  • Bobrie A, Colombo M, Raposo G, Thery C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 2011;12:1659–68.

    Article  CAS  PubMed  Google Scholar 

  • Boitrelle F, Ferfouri F, Petit JM, Selva J. Large human sperm vacuoles observed in motile spermatozoa under high magnification: nuclear thumbprints linked to failure of chromatin condensation. Hum Reprod. 2011;26(7):1650–8.

    Article  CAS  PubMed  Google Scholar 

  • Boitrelle F, Albert M, Petit JM, Ferfouri F, Wainer R, Bergere M, et al. Small human sperm vacuoles observed under high magnification are pocket-like nuclear concavities linked to chromatin condensation failure. Reprod Biomed Online. 2013;27(2):201–11.

    Article  CAS  PubMed  Google Scholar 

  • Bork P, Sander C. A large domain common to sperm receptors (Zp2 and Zp3) and TGF-b type III receptor. FEBS Lett. 1992;300:237–40.

    Article  CAS  PubMed  Google Scholar 

  • Boué F, Berubé B, De Lamirande E, Gagnon C, Sullivan R. Human sperm-zona pellucid interaction in inhibited by an antiserum against a hamster sperm protein. Biol Reprod. 1994;51:577–87.

    Article  PubMed  Google Scholar 

  • Bourne H, Liu DY, Clarke GN, Gordon Baker HW. Normal fertilization and embryo development by intracytoplasmic sperm injection of round-headed acrosomeless sperm. Fertil Steril. 1995;63:1329–32.

    Article  CAS  PubMed  Google Scholar 

  • Bozkurt HH, Wooley DM. Morphology of nexin links in relation to interdoublet sliding in the sperm flagellum. Cell Motil Cytoskeleton. 1993;24:109–18.

    Article  CAS  PubMed  Google Scholar 

  • Brokaw CJ. Flagellar movement: a sliding filament model. Science. 1972;178:455–62.

    Article  CAS  PubMed  Google Scholar 

  • Brokaw CJ. Direct measurements of sliding between outer doublet microtubules in swimming sperm flagella. Science. 1989;243:1593–6.

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem. 2000;275:17221–4.

    Article  CAS  PubMed  Google Scholar 

  • Brown CR, Von GKI, Jones R. Changes in plasma membrane glycoproteins of rat spermatozoa during maturation in the epididymis. J Cell Biol. 1983;96:256–64.

    Article  CAS  PubMed  Google Scholar 

  • Bunch DO, Welch JE, Magyar PL, Eddy EM, O’Brien DA. Glyceraldehyde 3-phosphate dehydrogenase-S protein distribution during mouse spermatogenesis. Biol Reprod. 1998;58:834–41.

    Article  CAS  PubMed  Google Scholar 

  • Calvin HI. Comparative labelling of rat epididymal spermatozoa by intratesticularly administered 65ZnCl2 and [35S]cysteine. J Reprod Fert. 1981;61:65–73.

    Article  CAS  Google Scholar 

  • Calvin HI, Bedford JM. Formation of disulfide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J Reprod Fertil. 1971;13:65–75.

    Google Scholar 

  • Calvin HI, Yu CC, Bedford JM. Effects of epididymal maturation, zinc (II) and copper (II) on the reactive sulfhydryl content of structural elements in rat spermatozoa. Exp Cell Res. 1973;81:333–41.

    Article  CAS  PubMed  Google Scholar 

  • Camatini M, Colombo A, Bonfanti P. Cytoskeletal elements in mammalian spermiogenesis. Microsc Res Tech. 1992;20:232–50.

    Article  CAS  PubMed  Google Scholar 

  • Carlson AE, Westenbroek RE, Quill T, Ren D, Clapham DE, Hille B, et al. CatSper1 required for evoked Ca2+entry and control of flagellar function in sperm. Proc Natl Acad Sci U S A. 2003;100:14864–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrera A, Gerton GL, Moss SB. The major fibrous sheath polypeptide of mouse sperm: structural and functional similarities to the A-kinase anchoring proteins. Dev Biol. 1994;165:272–84.

    Article  CAS  PubMed  Google Scholar 

  • Cassuto NG, Bouret D, Plouchart JM, Jellad S, Vanderzwalmen P, Balet R, et al. A new real-time morphology classification for human spermatozoa: a link for fertilization and improved embryo quality. Fertil Steril. 2009;92:1616–25.

    Article  PubMed  Google Scholar 

  • Cheung A, Swann K, Carroll J. The ability to generate normal Ca2+ transients in response to spermatozoa develops during the final stages of oocyte growth and maturation. Hum Reprod. 2000;15:389–95.

    Article  Google Scholar 

  • Clulow J, Jones RC, Hansen LA. Micropuncture and cannulation studies of fluid composition and transport in the ductuli efferentes testis of the rat: comparisons with the homologous metanephric proximal tubule. Exp Physiol. 1994;79:915–28.

    Article  CAS  PubMed  Google Scholar 

  • Coonard SA, Herr JC, Westhusin ME. Inhibition of bovine fertilization in vitro by antibodies to SP-10. J Reprod Fertil. 1996;107:287–97.

    Article  Google Scholar 

  • Cornwall GA, Vindivich D, Tillman S, Chang TS. The effect of sulfhydryl oxidation on the morphology of immature hamster epididymal spermatozoa induced to acquire motility in vitro. Biol Reprod. 1988;39:141–55.

    Article  CAS  PubMed  Google Scholar 

  • Corselli J, Talbot P. In vitro penetration of hamster oocyte-cumulus complexes using physiological numbers of sperm. Dev Biol. 1987;122:227–42.

    Article  CAS  PubMed  Google Scholar 

  • Cummins JM, Yanagimachi R. Development of ability to penetrate the cumulus oophorus by hamster spermatozoa capacitated in vitro, in relation to the timing of the acrosome reaction. Gamete Res. 1986;15:187–212.

    Article  Google Scholar 

  • de Lamirande E, Leclerc P, Gagnon C. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Human Reprod. 1997;3:175–94.

    Article  Google Scholar 

  • de Vries KJ, Wiedmer T, Sims PJ, Gadella BM. Caspase-independent exposure of aminophospholipids and tyrosine phosphorylation in bicarbonate responsive human sperm cells. Biol Reprod. 2003;68:2122–34.

    Article  PubMed  CAS  Google Scholar 

  • Demarco IA, Espinosa F, Edwards J, Sosnik J, De La Vega-Beltran JL, Hockensmith JW, et al. Involvement of a Na+/HCO-3 cotransporter in mouse sperm capacitation. J Biol Chem. 2003;278:7001–9.

    Article  CAS  PubMed  Google Scholar 

  • Didry D, Carlier MF, Pantaloni D. Synergy between actin depolymerizing factor/cofolin and profiling in increasing actin filament turnover. J Biol Chem. 1998;273:25602–11.

    Article  CAS  PubMed  Google Scholar 

  • Doiguchi M, Mori T, Toshimori K, Shibata Y, Iida H. Spergen-1 might be an adhesive molecule associated with mitochondria in the middle piece of spermatozoa. Dev Biol. 2002;252:127–37.

    Article  CAS  PubMed  Google Scholar 

  • Dzeja PP, Terzic A. Phosphotransfer networks and cellular energetics. J Exp Biol. 2003;206:2039–47.

    Article  CAS  PubMed  Google Scholar 

  • Eddy EM, Toshimori K, O’Brien DA. Fibrous sheath of mammalian spermatozoa. Microsc Res Tech. 2003;61:103–15.

    Article  CAS  PubMed  Google Scholar 

  • Edidin M. Membrane cholesterol, protein phosphorylation, and lipid rafts. Sci STKE. 2001;2001(67):pe1.

    CAS  PubMed  Google Scholar 

  • Eickhoff R, Baldauf C, Koyro HW, Wennemuth G, Suga Y, Seitz J, et al. Influence of macrophage migration inhibitory factor (MIF) on the zinc content and redox state of protein-bound sulphydryl groups in rat sperm: indications for a new role of MIF in sperm maturation. Mol Hum Reprod. 2004;10:605–11.

    Article  CAS  PubMed  Google Scholar 

  • Eickhoff R, Jennemann G, Hoffbauer G, Schuring MP, Kaltner H, Sinowatz F, et al. Immunohistochemical detection of macrophage migration inhibitory factor in fetal and adult bovine epididymis: release by the apocrine secretion mode? Cells Tissues Organs. 2006;182:22–31.

    Article  CAS  PubMed  Google Scholar 

  • Ellerman DA, Da RV, Cohen DJ, Busso D, Morgenfeld MM, Cuasnicu PS. Expressionand structure-function analysis of DE, a sperm cysteine-richsecretory protein that mediates gamete fusion. Biol Reprod. 2002;67:1225–31.

    Article  CAS  PubMed  Google Scholar 

  • Evans JP, Schultz RM, Kopf GS. Identification and localization of integrin subunits in oocytesand eggs of the mouse. Mol Reprod Dev. 1995;40:211–20.

    Article  CAS  PubMed  Google Scholar 

  • Fawcett DW. A comparative view of sperm ultrastructure. Biol Reprod. 1970;Suppl 2:90–127.

    Article  Google Scholar 

  • Fawcett D. The mammalian spermatozoon. Dev Biol. 1975;44:394–436.

    Article  CAS  PubMed  Google Scholar 

  • Fekonja N, Strus J, Znideric MT, Knez K, Bokal EV, Verdenik I, et al. Clinical and structural features of sperm head vacuoles in men included in the in vitro fertilization program. Biomed Res Int. 2014;2014:1–12.

    Google Scholar 

  • Fetic S, Yeung CH, Sonntag B, Nieschlag E, Cooper TG. Relationship of cytoplasmic droplets to motility, migration in mucus, and volume regulation of human spermatozoa. J Androl. 2006;27:294–301.

    Article  PubMed  Google Scholar 

  • Flesch FM, Brouwers JF, Nievelstein PF, Verkleij AJ, van Golde LM, Colenbrander B, et al. Bicarbonate stimulated phospholipid scrambling induces cholesterol redistribution and enables cholesterol depletion in the sperm plasma membrane. J Cell Sci. 2001;114:3543–55.

    CAS  PubMed  Google Scholar 

  • Florman HM, Jungnickel MK, Sutton KA. Regulating the acrosome reaction. Int J Dev Biol. 2008;52:503–10.

    Article  CAS  PubMed  Google Scholar 

  • Foster JA, Klotz KL, Flickinger CL, Thomas TX, Wright RM, Castillo JR, et al. Human SP-10: acrosomal distribution, processing and fate after the acrosomal reaction. Biol Reprod. 1994;51:1222–31.

    Article  CAS  PubMed  Google Scholar 

  • Foster JA, Friday BB, Maulit MT, Blobel C, Winfrey VP, Olson GE, et al. AM67, a secretory component of the guinea pig spermacrosomal matrix, is related to mouse sperm protein sp56and the complement component 4-binding proteins. J Biol Chem. 1997;272:12714–22.

    Article  CAS  PubMed  Google Scholar 

  • Franco Jr JG, Baruffi RLR, Mauri AL, Petersen CG, Oliveira JBA, Vagnini L. Significance of large nuclear vacuoles in human spermatozoa: implications for ICSI. Reprod Biomed Online. 2008;17(1):42–5.

    Article  PubMed  Google Scholar 

  • Frenette G, Lessard C, Sullivan R. Selected proteins of “prostasome like particles” from epididymal cauda fluid are transferred to epididymal caput spermatozoa in bull. Biol Reprod. 2002;67:308–13.

    Article  CAS  PubMed  Google Scholar 

  • Fujita A, Nakamura K, Kato T, Watanabe N, Ishizaki T, Kimura K, et al. Ropporin, a sperm-specific binding protein of rophilin, that is localized in the fibrous sheath of sperm flagella. J Cell Sci. 2000;113:103–12.

    CAS  PubMed  Google Scholar 

  • Gadella BM, Harrison RA. The capacitating agent bicarbonate induces protein kinase A-dependent changes in phospholipid transbilayer behavior in the sperm plasma membrane. Development. 2000;127:2407–20.

    CAS  PubMed  Google Scholar 

  • Garbers DL, Tubb DJ, Hyne RV. A requirement of bicarbonate for Ca2 + −induced elevations of cyclic AMP in guinea pig spermatozoa. J Biol Chem. 1982;257:8980–4.

    CAS  PubMed  Google Scholar 

  • Garty NB, Galiani D, Aharonheim A, Ho YK, Phillips DM, Dekel N, et al. G-proteins in mammalian gametes: an immunocytochemical study. J Cell Sci. 1988;91:21–31.

    PubMed  Google Scholar 

  • Gatewood JM, Cook GR, Balhorn R, Schmid CW, Bradbury EM. Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J Biol Chem. 1990;265:20662–6.

    CAS  PubMed  Google Scholar 

  • Gatti JL, Billard R, Christen R. Ionic regulation of the plasma membrane potential of rainbow trout (Salmo gairdneri) spermatozoa: role in the initiation of sperm motility. J Cell Physiol. 1990;143:546–54.

    Article  CAS  PubMed  Google Scholar 

  • Gerace L, Comeau C, Benson M. Organization and modulation of nuclear lamina structure. J Cell Sci. 1984;1:137–60.

    Article  CAS  Google Scholar 

  • Gibbons IR, Fronk E. Some properties of bound and soluble dynein from sea urchin flagella. J Cell Biol. 1972;54:365–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths GS, Galileo DS, Reese K, Martin-Deleon PA. Investigating the role of murine epididymosomes and uterosomes in GPI-linked protein transfer to sperm using SPAM1 as a model. Mol Reprod Dev. 2008;75:1627–36.

    Article  CAS  PubMed  Google Scholar 

  • Grimes Jr SR. Nuclear proteins in spermatogenesis. Comp Biochem Physiol. 1986;83B:495–500.

    CAS  Google Scholar 

  • Gwatkin RBL. Fertilization mechanisms in man and mammals. New York: Plenum; 1977.

    Book  Google Scholar 

  • Hanoune J, Defer N. Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol. 2001;41:145–74.

    Article  CAS  PubMed  Google Scholar 

  • Haraguchi CM, Mabuchi T, Hirata S, Shoda T, Tokumoto T, Hoshi K, et al. Possible function of caudal nuclear pocket: degradation of nucleoproteins by ubiquitin-proteasome system in ratspermatids and human sperm. J Histochem Cytochem. 2007;55:585–95.

    Article  CAS  PubMed  Google Scholar 

  • Harrison RA. Rapid PKA-catalysed phosphorylation of boar sperm proteins induced by the capacitating agent bicarbonate. Mol Reprod Dev. 2004;67:337–52.

    Article  CAS  PubMed  Google Scholar 

  • Harrison RA, Miller NG. cAMP-dependent protein kinase control of plasma membrane lipid architecture in boar sperm. Mol Reprod Dev. 2000;55:220–8.

    Article  CAS  PubMed  Google Scholar 

  • Hecht NB. Mammalian protamines and their expression. In: Hnilica L, Stein G, Stein J, editors. Histones and other basic nuclear proteins. Boca Raton: CRC Press; 1989. p. 347–73.

    Google Scholar 

  • Henkel R, Bittner J, Weber R, Hther F, Miska W. Relevance of zinc in human sperm flagella and its relation to motility. Fertil Steril. 1999;6:1138–43.

    Article  Google Scholar 

  • Henkel R, Baldauf C, Bittner J, Weidner W, Miska W. Elimination of zinc from the flagella of spermatozoa during epididymal transit is important for motility. Reprod Technol. 2001;10:280–5.

    Google Scholar 

  • Hess H, Heid H, Franke WW. Molecular characterization of mammalian cylicin, a basic protein of the sperm head cytoskeleton. J Cell Biol. 1993;122:1043–52.

    Article  CAS  PubMed  Google Scholar 

  • Hinton BT, Pryor JP, Hirsch AV, Setchell BP. The concentration of some inorganic ions and organic compounds in the luminal fluid of the human ductus deferens. Int J Androl. 1981;4:457–61.

    Article  CAS  PubMed  Google Scholar 

  • Ho HC, Suarez SS. Hyperactivation of mammalian spermatozoa: function and regulation. Reproduction. 2001a;122:519–26.

    Article  CAS  PubMed  Google Scholar 

  • Ho HC, Suarez SS. An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca2+ store is involved in regulating sperm hyperactivated motility. Biol Reprod. 2001b;65:1606–15.

    Article  CAS  PubMed  Google Scholar 

  • Ho HC, Suarez SS. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility. Biol Reprod. 2003;68:1590–6.

    Article  CAS  PubMed  Google Scholar 

  • Holt WV, Harrison RAP. Bicarbonate stimulation of boar sperm motility via a protein kinase A-dependent pathway: between-cell and between-ejaculate differences are not due to deficiencies in protein kinase A activation. J Androl. 2002;23:557–65.

    CAS  PubMed  Google Scholar 

  • Hoodbhoy T, Talbot P. Mammalian corticalgranules: contents, fate, and function. Mol Reprod Dev. 1994;39:439–48.

    Article  CAS  PubMed  Google Scholar 

  • Horner VL, Wolfner MF. Transitioning from egg to embryo: triggers and mechanisms of egg activation. Dev Dyn. 2008;237:527–44.

    Article  CAS  PubMed  Google Scholar 

  • Hoshi K, Aita T, Yanagida K, Yoshimatsu N, Sato A. Variation in the cholesterol/ phospholipid ratio in human spermatozoa and its relationship with capacitation. Hum Reprod. 1990;5:71–4.

    Article  CAS  PubMed  Google Scholar 

  • Huitorel P, White D, Fouquet JP, Kann ML, Cosson J, Gagnon C. Differential distribution of glutamylated tubulin isoforms along the sea urchin sperm axoneme. Mol Reprod Dev. 2002;62:139–48.

    Article  CAS  PubMed  Google Scholar 

  • Huszar G, Vigue L, Corrales M. Sperm creatine phosphokinase activity as a measure of sperm quality in normospermic, variablespermic, and oligospermic men. Biol Reprod. 1988;38:1061–6.

    Article  CAS  PubMed  Google Scholar 

  • Huszar G, Vigue L, Morshedi M. Sperm creatine phosphokinase Misoform ratios and fertilizing potential of men: a blinded study of 84 couples treated with in vitro fertilization. Fertil Steril. 1992;57:882–8.

    Article  CAS  PubMed  Google Scholar 

  • Ikawa M, Inoune N, Okabe M. Mechanisms of sperm-egg interactions emerging from gene manipulated animals. Int J Dev Biol. 2008;52:657–64.

    Article  CAS  PubMed  Google Scholar 

  • Iyengar GV. Reference values for the concentration of As, Cd, Co, Cr, Cu, Fe, I, Hg, Mn, Mo, Ni, Pb, Se and Zn in selected human tissues and body fluids. Biol Trace Elem Res. 1987;12:263–95.

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal BS, Tur-Kaspa I, Dor J, Mashiach S, Eisenbach M. Human sperm chemotaxis: is progesterone a chemoattractant? Biol Reprod. 1999;60:1314–9.

    Article  CAS  PubMed  Google Scholar 

  • Janick J, Zeitz L, Whitmore WF. Seminal fluid and spermatozoon zinc levels and their relationship to human spermatozoon motility. Fertil Steril. 1971;22:573–80.

    Article  CAS  PubMed  Google Scholar 

  • Jones R. Identification and functions of mammalian sperm–egg recognition molecules during fertilization. J Reprod Fertil Suppl. 1990;42:89–105.

    CAS  PubMed  Google Scholar 

  • Joshi CS, Suryawanshi AR, Khan SA, Balasinor NH, Khole VV. Liprin a3: a putative estrogen regulated acrosomal protein. Histochem Cell Biol. 2012;139:535–48.

    Article  PubMed  CAS  Google Scholar 

  • Kaldis P, Stolz M, Wyss M, Zanolla E, Rothen-Rutishauser B, Vorherr T, et al. Identification of two distinctly localized mitochondrial creatine kinase isoenzymes in spermatozoa. J Cell Sci. 1996;109:2079–88.

    CAS  PubMed  Google Scholar 

  • Kerr JB. Ultrastructure of the seminiferous epithelium and intertubular tissue of the human testis. J Electron Microsc Tech. 1991;19:215–40.

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Gerton GL. Differential release of soluble and matrix components: evidence for intermediate states of secretion during spontaneous acrosomal exocytosis in mouse sperm. Dev Biol. 2003;264:141–52.

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Cha MC, Gerton GL. Mouse sperm protein sp56 is a component of the acrosomal matrix. Biol Reprod. 2001;64:36–43.

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff C. CD52 is the ‘major maturation-associated’ sperm membrane antigen. Mol Hum Reprod. 1996;2:9–17.

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff C, Osterhoff C, Young L. Molecular cloning and characterization of HE1, a major secretory protein of the human epididymis. Biol Reprod. 1996;54:847–56.

    Article  CAS  PubMed  Google Scholar 

  • Kol MA, de Kruijff B, de Kroon AI. Phospholipid flip-flop in biogenic membranes: what is needed to connect opposite sides. Semin Cell Dev Biol. 2002;13:163–70.

    Article  CAS  PubMed  Google Scholar 

  • Krapf D, Ruan YC, Wertheimer EV, Battistone MA, Pawlak JB, Sanjay A, et al. Src is necessary for epididymal development and is incorporated into sperm during epididymal transit. Dev Biol. 2012;369:43–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krohne G, Benavente R. The nuclear lamins. A multigene family of proteins in evolution and differentiation. Exp Cell Res. 1986;162:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Kruger TF, Acosta AA, Simmons KF, Swanson RJ, Matta JF, Veeck LL, et al. New method of evaluating sperm morphology with predictive value for human in vitro fertilization. Urology. 1987;30:248–51.

    Article  CAS  PubMed  Google Scholar 

  • Kusumi A, Koyama-Honda I, Suzuki K. Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic. 2004;5:213–20.

    Article  CAS  PubMed  Google Scholar 

  • Leclerc P, De Lamirande E, Gagnon C. Cyclic adenosine 3′,5′monophosphate-dependent regulation of protein tyrosine phosphorylation in relation to human sperm capacitation and motility. Biol Reprod. 1996;55:684–92.

    Article  CAS  PubMed  Google Scholar 

  • Lecuyer C, Dacheux JL, Hermand E, Mazeman E, Rousseaux J, Rousseaux-Prevost R. Actin binding properties and colocalization with actin during spermiogenesis of mammalian sperm calicin. Biol Reprod. 2000;63:1801–10.

    Article  CAS  PubMed  Google Scholar 

  • Lefevre B, Wolf JP, Ziyyat A. Sperm egg interaction: is there a link between tetraspanin (s) and GPI- anchored protein (s)? Bioessays. 2010;32:143–52.

    Article  CAS  PubMed  Google Scholar 

  • Lefievre L, Conner SJ, Salpekar A, Olufowobi O, Ashton P, Pavlovic B, et al. Four zona pellucida glycoproteins are expressed in the human. Hum Reprod. 2004;19:1580–6.

    Article  CAS  PubMed  Google Scholar 

  • Légaré C, Gaudreault C, St-Jacques S, Sullivan R. P34H sperm protein is preferentially expressed by the human corpus epididymidis. Endocrinology. 1999;140:3318–27.

    Article  PubMed  Google Scholar 

  • Lin Y, Mahan K, Lathrop WF, Myles DG, Primakoff P. A hyaluronidase activity of the sperm plasma membrane protein PH-20 enables sperm to penetrate the cumulus cell layer surrounding the egg. J Cell Biol. 1994;125:1157–63.

    Article  CAS  PubMed  Google Scholar 

  • Lindemann CB, Kanous KS. "Geometric clutch" hypothesis of axonemal function: key functions and testable predictions. Cell Motil Cytoskelet. 1995;31:1–8.

    Article  CAS  Google Scholar 

  • Longo FJ. Incorporation and dispersal of spermsurface antigens in plasma membranes of inseminated seaurchin (Arbacia punctulata) eggs and oocytes. Dev Biol. 1989;131:37–43.

    Article  CAS  PubMed  Google Scholar 

  • Manning G, Plowman GD, Hunter T, Sudarsanam S. Evolution of protein kinase signaling from yeast to man. Trend Biochem Sci. 2002;27:514–20.

    Article  CAS  PubMed  Google Scholar 

  • McClean D, Rowlands IW. The role of hyaluronidase in fertilization. Nature. 1942;150:627–8.

    Article  CAS  Google Scholar 

  • Meizel S, Turner KO. Progesterone acts at the plasma membrane of human sperm. Mol Cell Endocrinol. 1991;11:R1–5.

    Article  Google Scholar 

  • Menkveld R, Wong WY, Lombard CJ, Wetzels AMM, Thomas CMG, Merkus HMWM, et al. Semen parameters, including WHO and strict criteria morphology, in a fertile and subfertile population: an effort towards standardization of in-vivo thresholds. Hum Reprod. 2001;16:1165–71.

    Article  CAS  PubMed  Google Scholar 

  • Meyer SA, Rosenberger AE. A plasma membrane associated hyaluronidase is localized to the posterior region of stallion sperm and is associated with sperm function. Biol Reprod. 1999;61:444–51.

    Article  Google Scholar 

  • Miki K, Qu W, Goulding EH, Willis WD, Bunch DO, Strader LF, et al. Glyceraldehyde 3-Phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Natl Acad Sci U S A. 2004;101(47):16501–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moos J, Peknicova J, Geussova G, Philimonenko V, Hozac P. Association of protein kinase A type I with detergent-resistant structures of mammalian sperm cells. Mol Reprod Dev. 1998;50:79–85.

    Article  CAS  PubMed  Google Scholar 

  • Mortillo S, Wassarman PM. Differential bindingof gold-labeled zona pellucida glycoproteins mZP2 and mZP3 to mouse sperm membrane compartments. Development. 1991;113:141–9.

    CAS  PubMed  Google Scholar 

  • Mortimer D, Menkveld R. Sperm morphology assessment—historical perspectives and current opinions. J Androl. 2001;22:192–205.

    CAS  PubMed  Google Scholar 

  • Mukai C, Okuno M. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol Reprod. 2004;71:540–7.

    Article  CAS  PubMed  Google Scholar 

  • Myles DG, Primakoff P. Why did the sperm cross the cumulus—to get to the oocyte: functions of the sperm surface proteins PH-20 and fertilin in arriving at and fusing with the egg. Biol Reprod. 1997;56:320–7.

    Article  CAS  PubMed  Google Scholar 

  • Nikolopoulou M, Soucek M, Vary JC. Changes in the lipid content of boar sperm plasma membranes during epididymal maturation. Biochem Biophys Acta. 1985;815:486–98.

    Article  CAS  PubMed  Google Scholar 

  • Nolan JP, Magargee SF, Posner RG, Hammerstedt RH. Flow cytometric analysis of transmembrane phospholipid movement in bull sperm. Biochemistry. 1995;34:3907–15.

    Article  CAS  PubMed  Google Scholar 

  • Oh J, Woo JM, Choi E, Kim T, Cho BN, Park ZY, et al. Molecular, biochemical, and cellular characterization of epididymal ADAMs, ADAM7 and ADAM28. Biochem Biophys Res Commun. 2005;331:1374–83.

    Article  CAS  PubMed  Google Scholar 

  • Oh JS, Han C, Cho C. ADAM7 is associated with epididymosomes and integrated into sperm plasma membrane. Mol Cells. 2009;28:441–6.

    Article  CAS  PubMed  Google Scholar 

  • Okamura N, Tajima Y, Soejima A, Masuda H, Sugita Y. Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. J Biol Chem. 1985;260:9699–705.

    CAS  PubMed  Google Scholar 

  • Oko R, Clermont Y. Mammalian spermatozoa: structure and assembly of the tail. In: Gagnon C, editor. Controls of sperm motility: biological and clinical aspects. Boca Raton: CRC Press; 1990. p. 3–28.

    Google Scholar 

  • Okunade GW, Miller ML, Pyne GJ, Sutliff RL, O’Connor KT, Neumann JC, et al. Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function of PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem. 2004;279:33742–50.

    Article  CAS  PubMed  Google Scholar 

  • Olson GE, Winfrey VP. Mitochondria– cytoskeletal interactions in the sperm midpiece. J Struct Biol. 1990;103:13–22.

    Article  CAS  PubMed  Google Scholar 

  • Olson GE, Winfrey VP, Bi M, Hardy DM, Nagdas SK. Zonadhesin assembly into the hamstersperm acrosomal matrix occurs by distinct targeting strategies during spermiogenesis and maturation in the epididymis. Biol Reprod. 2004;71:1128–34.

    Article  CAS  PubMed  Google Scholar 

  • Parks JE, Hammerstedt RH. Developmental changes occurring in the lipids of ram epididymal spermatozoa plasma membrane. Biol Reprod. 1985;32:653–68.

    Article  CAS  PubMed  Google Scholar 

  • Parrington J, Davis LC, Galione A, Wessel G. Flipping the switch: how a sperm activates the egg at fertilization. Dev Dyn. 2007;236:2027–38.

    Article  CAS  PubMed  Google Scholar 

  • Patel-King RS, Benashski SE, King SM. A bipartite Ca2 + -regulated nucleosidediphosphate kinase system within the Chlamydomonas flagellum. The regulatory subunit p72. J Biol Chem. 2002;277:34271–9.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen H. Further observations on the fine structure of the human spermatozoon. Z Zellforsch. 1972;123:305–15.

    Article  CAS  PubMed  Google Scholar 

  • Perdrix A, Travers A, Chelli MH, Escalier D, Do Rego JL, Milazzo JP, et al. Assessment of acrosome and nuclear abnormalities in human spermatozoa with large vacuoles. Hum Reprod. 2011;26(1):47–58.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Ramirez B, Castells M. In vitro biosynthesis of rat sperm outer dense fiber components. Life Sci. 1991;49:1549–54.

    Article  CAS  PubMed  Google Scholar 

  • Pomorski T, Herrmann A, Zimmermann B, Zachowski A, Muller P. An improved assay for measuring the transverse redistribution of fluorescent phospholipids in plasma membranes. Chem Phys Lipids. 1995;77:139–46.

    Article  CAS  PubMed  Google Scholar 

  • Pons-Rejraji H, Artonne C, Sion B, Brugnon F, Canis M, Janny L, et al. Prostasomes: inhibitors of capacitation and modulators of cellular signalling in human sperm. Int J Androl. 2011;34:568–80.

    Article  CAS  PubMed  Google Scholar 

  • Porter ME, Sale WS. The 9 + 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility. J Cell Biol. 2000;151:F37–42.

    Article  CAS  PubMed  Google Scholar 

  • Primakoff P, Hyatt H, Tredick-Kline J. Identification and purification of a sperm surface proteinwith a potential role in sperm–egg membrane fusion. J Cell Biol. 1987;104:141–9.

    Article  CAS  PubMed  Google Scholar 

  • Quill TA, Sugden SA, Rossi KL, Doolittle LK, Hammer RE, Garbers DL. Hyperactivated sperm motility driven by CatSper2 is required for fertilization. Proc Natl Acad Sci U S A. 2003;100:14869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rejraji H, Sion B, Prensier G, Carreras M, Motta C, Frenoux JM, et al. Lipid remodeling of murine epididymosomes and spermatozoa during epididymal maturation. Biol Reprod. 2006;74:1104–13.

    Article  CAS  PubMed  Google Scholar 

  • Robert M, Gagnon C. Semenogelin I: a coagulation forming multifunctional seminal vesicle protein. Cell Mol Life Sci. 1999;55:944–60.

    Article  CAS  PubMed  Google Scholar 

  • Rodgers RJ, Irving-Rodgers HF, Russell DL. Extracellular matrix of the developing ovarian follicle 4. Reproduction. 2003;126:415–24.

    Article  CAS  PubMed  Google Scholar 

  • Roldan ERS, Murase T, Shi QX. Exocytosis in spermatozoa in response to progesterone and zona pellucida. Science. 1994;266:1578–81.

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein E, Ziyyat A, Wolf JP, Le Naour F, Boucheix C. The molecular players of sperm egg fusion in mammals. Semin Cell Dev Biol. 2006;17:254–63.

    Article  CAS  PubMed  Google Scholar 

  • Sakata Y, Saegusa H, Zong S, Osanai M, Murakoshi T, Shimizu Y, et al. Ca(v)2.3 (alpha 1E) Ca2+channel participates in the control of sperm function. FEBS Lett. 2002;516:229–33.

    Article  CAS  PubMed  Google Scholar 

  • Sathananthan AH, Tatham B, Dharmawardena V, Grills B, Lewis I, Trounson A. Inheritance of sperm centrioles and centrosomes in bovine embryos. Arch Androl. 1997;38:37–48.

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Blandau RJ. Time and process ofsperm penetration into cumulus-free mouse eggs fertilizedin vitro. Gamete Res. 1979;1:39–46.

    Google Scholar 

  • Saunders CM, Larman MG, Parrington J, Cox LJ, Royse J, Blayney LM, et al. PLC zeta: a sperm –specific trigger of Ca(2+) oscillations in egg and embyo development. Development. 2002;129:3533–44.

    CAS  PubMed  Google Scholar 

  • Schatten G. The centrosome and its mode ofinheritance: the reduction of the centrosome during gametogenesisand its restoration during fertilization. Dev Biol. 1994;165:299–335.

    Article  CAS  PubMed  Google Scholar 

  • Serres C, Feneux D, Jouannet P. Abnormal distribution of the periaxonemal structures in a human sperm flagellar dyskinesia. Cell Motil Cytoskel. 1984a;6:8–76.

    Google Scholar 

  • Serres C, Feneux D, Jouannet P, David G. Influence of the flagellar wave development and propagationon the human sperm movement in seminal plasma. Gamete Res. 1984b;9:183–95.

    Article  Google Scholar 

  • Setchell BP, Maddocks S, Brooks DE. Anatomy, vasculature, innervation, and fluids of the male reproductive tract. In: Knobil E, Neill JD, editors. The physiology of reproduction, vol. 1. New York: Raven Press; 1994. p. 1063–175.

    Google Scholar 

  • Shi QX, Roldan ER. Bicarbonate/CO2 is not required for zona pellucida- or progesterone-induced acrosomal exocytosis of mouse spermatozoa but is essential for capacitation. Biol Reprod. 1995;52:540–6.

    Article  CAS  PubMed  Google Scholar 

  • Shur BD, Rodenhefer C, Ensslin MA, Lyng R, Raymond A. Identification of novel gamete receptors that mediate sperm adhesion to the egg coat. Mol Cell Endocrinol. 2006;250:137–48.

    Article  CAS  PubMed  Google Scholar 

  • Si Y, Okuno M. Role of tyrosine phosphorylation of flagellar proteins in hamster sperm hyperactivation. Biol Reprod. 1999;61:240–6.

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Vaz WL. Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct. 2004;33:269–95.

    Article  CAS  PubMed  Google Scholar 

  • Smith E, Yang P. The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility. Cell Motil Cytoskeleton. 2004;57:8–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stauss CR, Votta TJ, Suarez SS. Sperm motility hyperactivation facilitates penetration of the hamster zona pellucida. Biol Reprod. 1995;53:1280–5.

    Article  CAS  PubMed  Google Scholar 

  • Sudhof TC, Rizo J. Synaptotagmins: C2-domainproteins that regulate membrane traffic. Neuron. 1996;17:379–88.

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Bahat A, Gakamsky A, Girsh E, Katz N, Giojalas LC, et al. Human sperm chemotaxis: both the oocyte and its surrounding cumulus cells secrete sperm chemoattractants. Hum Reprod. 2005;20:761–7.

    Article  CAS  PubMed  Google Scholar 

  • Sutovsky P. Sperm-egg adhesion and fusion in mammals. Expert Rev Mol Med. 2009;11:e11.

    Article  PubMed  Google Scholar 

  • Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. Ubiquitinated spermmitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol Reprod. 2000;63:582–90.

    Article  CAS  PubMed  Google Scholar 

  • Sutovsky P, Manandhar G, Wu A, Oko R. Interactions of the sperm perinuclear theca with the oocyte: implications for oocyte activation, anti-polyspermy defense and assisted reproduction. Microsc Res Tech. 2003;61:362–78.

    Article  PubMed  Google Scholar 

  • Sutovsky P, van Leyen K, McCauley T, Day BN, Sutovsky M. Degradation of the paternal mitochondria after fertilization: implications for heteroplasmy, ART and mtDNA inheritance. Reprod Biomed Online. 2004;8:24–33.

    Article  CAS  PubMed  Google Scholar 

  • Swann K. Acytosolic sperm factor stimulates repetitive calcium increases and mimics fertilization in hamster egg. Development. 1990;110:1295–302.

    CAS  PubMed  Google Scholar 

  • Takada S, Wilkerson CG, Wakabayashi K, Kamiya R, Witman GB. The outer dynein arm-docking complex: characterization of a subunit (Oda1) necessary for outer arm assembly. Mol Biol Cell. 2002;13:1015–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbot P, Shur BD, Myles DG. Cell adhesion and fertilization: steps in oocyte transport, sperm zona pellucida interactions and sperm egg fusion. Biol Reprod. 2003;68:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Iguchi N, Egydio de Carvalhho C, Tadokoro Y, Yomogida K, Nishimune Y. Novel actin-like proteins T-ACTIN 1 and T-ACTIN 2 are differentially expressed in the cytoplasm and nucleus of mouse haploid germ cells. Biol Reprod. 2003;69:475–82.

    Article  CAS  PubMed  Google Scholar 

  • Tanii I, Oh-oko T, Yshingag K, Toshimori K. A mouse acrosomal cortical matrix protein, MC41, has ZP2-binding activity and forms a complex with a 75-kDa serine protease. Dev Biol. 2001;238:332–41.

    Article  CAS  PubMed  Google Scholar 

  • Tash JS. Protein phosphorylation: the second messenger signal transducer of flagellar motility. Cell Motil Cytoskeleton. 1989;14:332–9.

    Article  CAS  PubMed  Google Scholar 

  • Tesarik J, Drahorad J, Testart J, Mendoza C. Acrosin activation follows its surface exposure and precedes membrane fusion in human sperm acrosome reaction. Development. 1990;110:391–400.

    CAS  PubMed  Google Scholar 

  • Thimon V, Frenette G, Saez F, Thabet M, Sullivan R. Protein composition of human epididymosomes collected during surgical vasectomy reversal: a proteomic and genomic approach. Hum Reprod. 2008;23:1698–707.

    Article  CAS  PubMed  Google Scholar 

  • Tombes RM, Shapiro BM. Metabolite channeling: a phosphorylcreatine shuttle to mediate high energy phosphate transport between sperm mitochondrion and tail. Cell. 1985;41:325–34.

    Article  CAS  PubMed  Google Scholar 

  • Toshimori K, Higashi R, Oura C. Distribution of intramembranous particles and filipin-sterol complexes in mouse sperm membranes: polyene antibiotic filipin treatment. Am J Anat. 1985;174:455–70.

    Article  CAS  PubMed  Google Scholar 

  • Toshimori K, Tanii I, Araki S, Oura C. Characterization of the antigen recognized by a monoclonal antibody MN9: unique transport pathway to the equatorial segment of sperm head during spermiogenesis. Cell Tissue Res. 1992;270:459–68.

    Article  CAS  PubMed  Google Scholar 

  • Turner RM. Tales from the tail: what do we really know about sperm motility? J Androl. 2003;24:790–803.

    Article  PubMed  Google Scholar 

  • Turner TT, Giles RD. A sperm motility inhibiting factor in the rat epididymis. Am J Physiol. 1982;242:R199–203.

    CAS  PubMed  Google Scholar 

  • Ungar D, Hughson FM. SNARE protein structureand function. Annu Rev Cell Dev Biol. 2003;19:493–517.

    Article  CAS  PubMed  Google Scholar 

  • Urner F, Sakkas D. Protein phosphorylation in mammalian sperm. Reproduction. 2003;125:17–26.

    Article  CAS  PubMed  Google Scholar 

  • Visconti PE, Muschietti JP, Flawia MM, Tezon JG. Bicarbonate dependence of cAMP accumulation induced by phorbol esters in hamster spermatozoa. Biochim Biophys Acta. 1990;1054:231–6.

    Article  CAS  PubMed  Google Scholar 

  • Visconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, et al. Capacitation of mouse spermatozoa. II Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development. 1995;121:1139–50.

    CAS  PubMed  Google Scholar 

  • Visconti PE, Olds-Clarke P, Moss SB, Kalab P, Travis AJ, de las Heras M, et al. Properties and localization of a tyrosine phosphorylated form of hexokinase in mouse sperm. Mol Reprod Dev. 1996;43:82–93.

    Article  CAS  PubMed  Google Scholar 

  • Visconti PE, Ning X, Fornes MW, Alvarez JG, Stein P, Connors SA, et al. Cholesterol efflux-mediated signal transduction in mammalian sperm: cholesterol release signals an increase in protein tyrosine phosphorylation during mouse sperm capacitation. Dev Biol. 1999;214:429–43.

    Article  CAS  PubMed  Google Scholar 

  • Wassarman PM. Zona pellucida glycoproteins. Annu Rev Biochem. 1988;57:415–42.

    Article  CAS  PubMed  Google Scholar 

  • Wassarman PM, Jovine L, Litscher ES. A profile of fertilization in mammals. Nat Cell Biol. 2001;3:E59–64.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Tanaka A, Fujii S, Mizunuma H, Fukui A, Fukuhara R, et al. An investigation of the potential effect of vacuoles in human sperm on DNA damage using a chromosome assay and the TUNEL assay. Hum Reprod. 2011;26(5):978–86.

    Article  CAS  PubMed  Google Scholar 

  • Wennemuth G, Carlson AE, Harper AJ, Babcock DF. Bicarbonate actions on flagellar and Ca2+−channel responses: initial events in sperm activation. Development. 2003;130:1317–26.

    Google Scholar 

  • Whitaker M. Calcium at fertilization and in early development. Physiol Rev. 2006;86:25–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf DE, Cardullo RA. Physiological properties of the mammalian sperm plasma membrane. In: Baccetti B, editor. Comparative spermatology 20 years after. New York: Raven Press; 1991. p. 599–604.

    Google Scholar 

  • Wolkowicz JJ, Naaby-Hansen S, Gamble AR, Reddi PP, Flickinger CJ, Herr JC. Tektin B1 demonstrates flagellar localization in human sperm. Biol Reprod. 2002;66:241–50.

    Article  CAS  PubMed  Google Scholar 

  • Woolley DM. Evidence for twisted plane undulation in golden hamster sperm tails. J Cell Biol. 1977;75:851–65.

    Google Scholar 

  • Woolley DM, Osborn IW. Three-dimensional geometry of motile hamster spermatozoa. J Cell Sci. 1984;67:159–70.

    CAS  PubMed  Google Scholar 

  • World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: World Health Organization; 2010.

    Google Scholar 

  • Yamashita Y, Shimada M, Okazaki T, Maeda T, Terada T. Production of progesterone from de novosynthesized cholesterol in cumulus cells and its physiological role during meiotic resumption of porcine oocytes. Biol Reprod. 2003;68:1193–8.

    Article  CAS  PubMed  Google Scholar 

  • Yanagimachi R. The movement of golden hamster spermatozoa before and after capacitation. J Reprod Fertil. 1970;23:193–6.

    Article  CAS  PubMed  Google Scholar 

  • Yanagimachi R. Zona-free hamster eggs: their use is assessing fertilization capacitity and examining chromosomes of human spermatozoa. Gamete Res. 1984;10:178–232.

    Article  Google Scholar 

  • Yang CH, Srivastava PN, Williams WL. Purification and properties of aryl sulfatases from rabbit sperm acrosome. Proc Soc Exp Biol Med. 1974;145:721–5.

    Article  CAS  PubMed  Google Scholar 

  • Yeung CH, Cooper TG. Developmental changes in signalling transduction factors in maturing sperm duling epididymal transit. Cell Mol Biol. 2003;49:341–9.

    CAS  PubMed  Google Scholar 

  • Yeung CH, Woolley DM. Three-dimensional bend propagation in hamster sperm models and the direction of roll in free-swimming cells. Cell Motil. 1984;4:215–26.

    Article  CAS  PubMed  Google Scholar 

  • Yoshinaga K, Toshimori K. Organization and modifications of sperm acrosomal molecules during spermatogenesis and epididymal maturation. Microsc Res Tech. 2003;61:39–45.

    Article  CAS  PubMed  Google Scholar 

  • Yunes R, Michaut M, Tomes C, Mayorga LS. Rab3A triggers the acrosome reaction in permeabilized human spermatozoa. Biol Reprod. 2000;62:1084–9.

    Article  CAS  PubMed  Google Scholar 

  • Zahler WL, Doak GA. Isolation of the outer acrosomal membrane from bull spermatozoa. Biochim Biophys Acta. 1975;406:479–88.

    Article  CAS  PubMed  Google Scholar 

  • Zamboni L, Stefanini M. The fine structure of the neck of mammalian spermatozoa. Anat Rec. 1971;169:155–72.

    Article  CAS  PubMed  Google Scholar 

  • Zaneveld LJD, Polakoski KL, Schumacher GFB. Properties of acrosomal hyaluronidase from bull spermatozoa. Evidence for its similarity to testicular hyaluronidase. J Biol Chem. 1973;248:564–70.

    CAS  PubMed  Google Scholar 

  • Zeng Y, Clark EN, Florman HM. Sperm membrane potential: hyperpolarization during capacitation regulates zona pellucida-dependent acrosomal secretion. Dev Biol. 1995;171:554–63.

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Oberdorf JA, Florman HM. pH regulation in mouse sperm: identification of Na(+)-, Cl(−)-, and HCO3(−)-dependent and arylaminobenzoate-dependent regulatory mechanisms and characterization of their roles in sperm capacitation. Dev Biol. 1996;173:510–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Sharma MD, DNB, MAMS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sharma, M., Kumar, A. (2017). The Sperm. In: Kumar, A., Sharma, M. (eds) Basics of Human Andrology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3695-8_12

Download citation

Publish with us

Policies and ethics