Skip to main content

Carboxymethyl Polysaccharide-Based Multiunit Hydrogel Systems for Drug Delivery

  • Chapter
  • First Online:
Particulate Technology for Delivery of Therapeutics
  • 760 Accesses

Abstract

In recent years, natural polymers are being modified chemically to search for new materials for drug delivery applications. Natural polymers possess functional groups like hydroxyl, carboxyl, and amide that make them amenable for various modifications. Chemical modification is desirable to confer smartness to the polymers achieving pH-sensitivity, thermo-responsiveness of the delivery devices for controlled drug release. At the same time, some undesirable physicochemical properties of native polymers are elimination. The design of synthetic polymer-based particulate systems mostly involves organic solvents. However, their use in the design of drug delivery system is questionable in terms of long-term viability due to flammability, health hazards, and stringent governmental regulation. Henceforth, the scientists are involved in preparing drug-loaded particles avoiding the use of organic solvents. The gelling ability of the some native biopolymers as well as modified biopolymers with metallic salts have been utilized to fabricate particulate systems in aqueous environment. Carboxymethylation is an important reaction in offering gelling ability to the native polymers. Furthermore, the graft copolymers, hydrophobic conjugates, and interpenetrating networks have been tested in preparing drug delivery particles. This chapter discusses the carboxymethylation techniques, synthesis of particulate systems, and recent developments in drug delivery applications of some natural polymers including xanthan gum, guar gum, locust bean gum, pullulan, and curdlan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikary P, Krishnamoorthi S, Singh RP (2011) Synthesis and characterization of grafted carboxymethyl guar gum. J Appl Polym Sci 120:2621–2626

    Article  CAS  Google Scholar 

  • Asmarandei I, Fundueanu G, Cristea M, Harabagiu V, Constantin M (2013) Thermo- and pH-sensitive interpenetrating poly(N-isopropylacrylamide)/carboxymethyl pullulan network for drug delivery. J Polym Res 20:293–305

    Article  Google Scholar 

  • Badwaik HR, Sakure K, Alexander A, Ajazuddin A, Dhongade H, Tripathi DK (2016) Synthesis and characterisation of poly(acryalamide) grafted carboxymethyl xanthan gum copolymer. Int J Biol Macromol 85:361–369

    Article  CAS  PubMed  Google Scholar 

  • Bajpai SK, Sharma S (2006) Investigation of pH-sensitive swelling and drug release behavior of barium alginate/carboxymethyl guar gum hydrogel beads. J Macromol Sci A Pure Appl Chem 43:1513–1521

    Article  CAS  Google Scholar 

  • Banerjee S, Siddiqui L, Bhattacharya SS, Kaity S, Ghosh A, Chattopadhyay P, Pandey A, Singh L (2012) Interpenetrating polymer network (IPN) hydrogel microspheres for oral controlled release application. Int J Biol Macromol 50:198–206

    Article  CAS  PubMed  Google Scholar 

  • Bataille I, Huguet J, Muller G, Mocanu G, Carpov A (1997) Associative behaviour of hydrophobically modified carboxymethylpullulan derivatives. Int J Biol Macromol 20:179–191

    Article  CAS  PubMed  Google Scholar 

  • Becker A, Katzen F, Pühler A, Ielpi L (1998) Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl Microbiol Biotechnol 50:145–152

    Article  CAS  PubMed  Google Scholar 

  • Belbekhouche S, Ali G, Dulong V, Picton L, Le Cerf D (2011) Synthesis and characterization of thermosensitive and pH-sensitive block copolymers based on polyetheramine and pullulan with different length. Carbohydr Polym 86:304–312

    Article  CAS  Google Scholar 

  • Belbekhouche S, Desbrieres J, Hamaide T, Le Cerf D, Picton L (2013) Association states of multisensitive smart polysaccharide-block-polyetheramine copolymers. Carbohydr Polym 95:1–49

    Article  Google Scholar 

  • Bhardwaj TR, Kanwar M, Lal R, Gupta A (2000) Natural gums and modified natural gums as sustained-release carriers. Drug Dev Ind Pharm 26:1025–1038

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya SS, Ghosh AK, Banerjee S, Chattopadhyay P, Ghosh A (2012) Al3+ ion cross-linked interpenetrating polymeric network microbeads from tailored natural polysaccharides. Int J Biol Macromol 51:1173–1184

    Article  CAS  PubMed  Google Scholar 

  • Bruneel D, Schacht E (1993) Chemical modification of pululan. 1. Periodate Oxid Polym 34:2628–2632

    Article  CAS  Google Scholar 

  • Cevher E, Salomon SK, Makrakis A, Li XW, Brocchini S, Oya Alpar H (2015a) Development of chitosan–pullulan composite nanoparticles for nasal delivery of vaccines: optimisation and cellular studies. J Microencapsul 32:755–768

    Article  CAS  PubMed  Google Scholar 

  • Cevher E, Salomon SK, Somavarapu S, Brocchini S, Oya Alpar H (2015b) Development of chitosan–pullulan composite nanoparticles for nasal delivery of vaccines: in vivo studies. J Microencapsul 32:769–783

    Article  CAS  PubMed  Google Scholar 

  • Changez M, Burugapalli K, Koul V, Chowdary V (2003) The effect of composition of poly(acrylic acid)-gelatin hydrogel on gentamicin sulphate release: in vitro. Biomaterials 24:527–536

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Brown KM, Prud’homme RK (2002) Characterization and inter-molecular interactions of hydroxypropyl guar solutions. Biomacromolecules 3:456–461

    Google Scholar 

  • Das S, Ng KY (2010a) Resveratrol-loaded calcium-pectinate beads: effects of formulation parameters on drug release and bead characteristics. J Pharm Sci 99:840–860

    Article  CAS  PubMed  Google Scholar 

  • Das S, Ng KY (2010b) Impact of glutaraldehyde on in vivo colon-specific release of resveratrol from biodegradable pectin-based formulation. J Pharm Sci 99:4903–4916

    Article  CAS  PubMed  Google Scholar 

  • Davis SS, Hardy JG, Taylor MJ, Whalley DR, Wilson CG (1984) A comparative study of the gastrointestinal transit of a pellet and tablet formulation. Int J Pharm 21:167–177

    Article  CAS  Google Scholar 

  • Dea ICM, Morrison A (1975) Chemistry and interactions of seed galactomannans. Adv Carbohydr Chem Biochem 31:241–312

    Article  CAS  Google Scholar 

  • Dey P, Maiti S, Sa B (2013a) Gastrointestinal delivery of glipizide from carboxymethyl locust bean gum–Al3+–alginate hydrogel network: in vitro and in vivo performance. J Appl Polym Sci 128:2063–2072

    CAS  Google Scholar 

  • Dey P, Maiti S, Sa B (2013b) Novel etherified locust bean gum-alginate hydrogels for controlled release of glipizide. J Biomater Sci Polym Ed 24:663–683

    Article  CAS  PubMed  Google Scholar 

  • Dey P, Sa B, Maiti S (2015) Impact of gelation period on modified locust bean-alginate interpenetrating beads for oral glipizide delivery. Int J Biol Macromol 76:176–180

    Article  CAS  PubMed  Google Scholar 

  • Duval-Terrié C, Huguet J, Muller G (2003) Self-assembly and hydrophobic clusters of amphiphilic polysaccharides. Colloids Surf A 220:105–115

    Article  Google Scholar 

  • Follonier N, Doelkar E (1992) Biopharmaceutical comparison of oral multiple unit and single unit sustained release dosage forms. STP Pharma Sci 2:141–158

    CAS  Google Scholar 

  • Gao F, Li L, Liu T, Hao N, Liu H, Tan L et al (2012) Doxorubicin loaded silica nanorattles actively seek tumors with improved anti-tumor effects. Nanoscale 4:3365–3372

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Li L, Zhang H, Yang W, Chen H, Zhou J, Zhou Z, Wang Y, Cai Y, Li X, Liu L, Zhang Q (2010) Deoxycholic acid modified-carboxymethyl curdlan conjugate as a novel carrier of epirubicin: in vitro and in vivo studies. Int J Pharm 392:254–260

    Article  CAS  PubMed  Google Scholar 

  • Gao F-P, Zhang H-Z, Liu L-R, Yang X-D, Zhang Q-Q (2008a) Preparation and characteristics of self-assembled nanoparticles of curdlan derivatives-deoxycholic acid conjugates. J Funct Mater 39:315–319

    CAS  Google Scholar 

  • Gao F-P, Zhang H-Z, Liu L-R, Wang YS, Jiang Q, Yang XD, Zhang QQ (2008b) Preparation and physicochemical characteristics of self-assembled nanoparticles of deoxycholic acid modified-carboxymethyl curdlan conjugates. Carbohydr Polym 71:606–613

    Article  CAS  Google Scholar 

  • Garcı́a-Ochoa F, Santos VE, Casas JA, Gómez E (2000) Xanthan gum: production, recovery, and properties. Biotechnol Adv 18: 549–579

    Google Scholar 

  • Giri TK (2015) Intestinal controlled delivery of diclofenac sodium through pH-sensitive hydrogel beads. In: Int’l conference on biotechnology, nanotechnology & environmental engineering (ICBNE’15), Bangkok (Thailand), April 22–23, pp 5–9

    Google Scholar 

  • Giri TK, Choudhary C, Alexander A, Ajazuddin A, Badwaik H, Tripathy M, Tripathi DK (2013) Sustained release of diltiazem hydrochloride from cross-linked biodegradable IPN hydrogel beads of pectin and modified xanthan gum. Indian J Pharm Sci 75:619–627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giri TK, Pure S, Tripathi DK (2015) Synthesis of graft copolymers of acrylamide for locust bean gum using microwave energy: swelling behavior, flocculation characteristics and acute toxicity study. Polímeros 25:168–174

    Article  Google Scholar 

  • Gotoh T, Matsushima K, Kikuchi K (2004) Preparation of alginate-chitosan hybrid gel beads and adsorption of divalent metal ions. Chemosphere 55:135–140

    Article  CAS  PubMed  Google Scholar 

  • Gupta NR, Arun Torris AT, Wadgaonkar PP, Rajamohanan PR, Ducouret G, Hourdet D, Creton C, Badiger MV (2015) Synthesis and characterization of PEPO grafted carboxymethyl guar and carboxymethyl tamarind as new thermo-associating polymers. Carbohydr Polym 117:331–338

    Article  CAS  PubMed  Google Scholar 

  • Gupta NR, Bhagavatula P, Chinnakonda GS, Badiger MV (2014) A nanocomposite of silver and thermo-associating polymer by green route: a potential soft-hard material for controlled drug release. RSC Adv 4:10261–10268

    Article  CAS  Google Scholar 

  • Halder A, Mukherjee S, Sa B (2005) Development and evaluation of polyethyleneimine-treated calcium alginate beads for sustained release of diltiazem. J Microencapsul 22:67–80

    Article  CAS  PubMed  Google Scholar 

  • Harada T, Terasaki M, Harada A (1993) Curdlan. In: Whistler RL, BeMiller JN (eds) Industrial gums. Academic press, New York, pp 427–445

    Chapter  Google Scholar 

  • Harris MR, Ghebre-Sellassie I (1989) Aqueous Polymeric Coating for Modified Release Pellets. In: McGinity JW (ed) Aqueous polymeric coatings for pharmaceutical dosage forms. Marcel Dekker Inc, New York, p 64

    Google Scholar 

  • Hoffman J, Svensson S (1978) Studies of the distribution of the d-galactosylside-chains in guaran. Carbohydr Res 65:65–71

    Article  CAS  Google Scholar 

  • Jeong YI, Kim DH, Chung CW, Yoo JJ, Choi KH, Kim CH et al (2012) Self-assembled nanoparticles of hyaluronic acid/poly(DL-lactide-co-glycolide) block copolymer. Colloids Surf B Biointerfaces 90:28–35

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Fu Y, Jiang Z (2004) The synthesis and characterization of poly(ethylene glycol) grafted on pullulan. J Appl Polym Sci 91:1217–1221

    Article  CAS  Google Scholar 

  • Kaity S, Ghosh A (2013) Carboxymethylation of locust bean gum: application in interpenetrating polymer network microspheres for controlled drug delivery. Ind Eng Chem Res 52:10033–10045

    Article  CAS  Google Scholar 

  • Kaur H, Yadav S, Ahuja M, Dilbaghi N (2012) Synthesis, characterization and evaluation of thiolated tamarind seed polysaccharide as a mucoadhesive polymer. Carbohydr Polym 90:1543–1549

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni RV, Sa B (2008a) Enteric delivery of ketoprofen through functionally modified poly(acrylamide-grafted-xanthan)-based pH-sensitive hydrogel beads: preparation, in vitro and in vivo evaluation. J Drug Target 16:167–177

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni AR, Soppimath KS, Aminabhavi TM, Rudzinski WE (2001) In vitro release kinetics of cefadroxil, loaded sodium alginate interpenetrating network beads. Eur J Pharm Biopharm 51:127–133

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni RV, Sa B (2008b) Evaluation of pH-sensitivity and drug release characteristics of (polyacrylamide-grafted-xanthan)-carboxymethyl cellulose-based pH-sensitive interpenetrating network hydrogel beads. Drug Dev Ind Pharm 34:1406–1414

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Ahuja M (2012) Carboxymethyl gum kondagogu: synthesis, characterization and evaluation as mucoadhesive polymer. Carbohydr Polym 90:637–643

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Singh K, Ahuja M (2009) Xanthan-g-poly(acrylamide): microwave-assisted synthesis, characterization and in vitro release behavior. Carbohydr Polym 76:261–267

    Article  CAS  Google Scholar 

  • Kundu T, Mukherjee K, Biswanath S (2012) Hydrogel beads composed of sodium carboxymethyl xanthan and sodium carboxymethyl cellulose for controlled release of aceclofenac: effect of formulation variables. Res J Pharm Technol 5:103–113

    Google Scholar 

  • Lee SJ, Shim Y-H, Oh J-S, Jeong Y-I, Park I-K, Lee HC (2015) Folic-acid-conjugated pullulan/poly(DL-lactide-co-glycolide) graft copolymer nanoparticles for folate-receptor-mediated drug delivery. Nanoscale Res Lett 10:43–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehtovaara BC, Verma MS, Gu FX (2012) Synthesis of curdlan-graft-poly(ethylene glycol) and formulation of doxorubicin-loaded core–shell nanoparticles. J Bioact Compat Polym 27:13–17

    Article  Google Scholar 

  • Li L, Gao F-P, Tang H-B, Bai Y-G, Li R-F, Li X-M, Liu L-R, Wang Y-S, Zhang Q-Q (2010) Self-assembled nanoparticles of cholesterol-conjugated carboxymethyl curdlan as a novel carrier of epirubicin. Nanotechnology 21:265601

    Article  PubMed  Google Scholar 

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular perme-ability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  CAS  PubMed  Google Scholar 

  • Maiti S, Dey P, Banik A, Sa B, Ray S, Kaity S (2010) Tailoring of locust bean gum and development of hydrogel beads for controlled oral delivery of glipizide. Drug Deliv 17:288–300

    Article  CAS  PubMed  Google Scholar 

  • Maiti S, Mondol R, Sa B (2014) Nanoreticulations of etherified locust bean polysaccharide for controlled oral delivery of lamivudine. Int J Biol Macromol 65:193–199

    Article  CAS  PubMed  Google Scholar 

  • Maiti S, Mukherjee S (2014) Controlled drug delivery attributes of co-polymer micelles and xanthan-O-carboxymethyl hydrogel particles. Int J Biol Macromol 70:37–43

    Article  CAS  PubMed  Google Scholar 

  • Maiti S, Ray S, Sa B (2009) Controlled delivery of bovine serum albumin from carboxymethyl xanthan microparticles. Pharm Dev Technol 14:165–172

    Article  CAS  PubMed  Google Scholar 

  • Maiti S, Ray S, Mandal B, Sarkar S, Sa B (2007) Carboxymethyl xanthan microparticles as a carrier for protein delivery. J Microencapsul 24:743–756

    Article  CAS  PubMed  Google Scholar 

  • Malik S, Ahuja M (2011) Gum kondagogu-g-poly (acrylamide): microwave-assisted synthesis, characterisation and release behavior. Carbohydr Polym 86:177–184

    Article  CAS  Google Scholar 

  • McCleary BV, Clark AH, Dea ICM, Rees DA (1985) The fine structures of carob and guar galactomannans. Carbohydr Res 139:237–260

    Article  CAS  Google Scholar 

  • Mitra S, Maity S, Sa B (2015) Effect of different cross-linking methods and processing parameterson drug release from hydrogel beads. Int J Biol Macromol 74:489–497

    Article  CAS  PubMed  Google Scholar 

  • Mocanu G, Mihai D, Picton L, LeCerf D, Muller G (2002) Associative pullulan gels and their interaction with biological active substances. J Control Release 83:41–51

    Article  CAS  PubMed  Google Scholar 

  • Mocanu G, Mihai D, DulongV Picton L, Cerf DL, Moscovici M (2011) Anionic polysaccharide hydrogels with thermosensitive properties. Carbohydr Polym 83:52–59

    Article  CAS  Google Scholar 

  • Mocanu G, Mihai D, LeCerf D, Picton L, Muller G (2004) Synthesis of new associative gel microspheres from carboxymethyl pullulan and their interactions with lysozyme. Eur Polym J 40:283–289

    Article  CAS  Google Scholar 

  • Mocanu G, Mihai D, Legros M, Picton L, Lecerf D (2008) New polysaccharide-based microparticles crosslinked with siloxane: interactions with biologically active substances. J Bioact Compatib Polym 23:82–94

    Article  CAS  Google Scholar 

  • Mocanu G, Nichifor M, Picton L, About-Jaudet E, Le Cerf D (2014) Preparation and characterization of anionic pullulan thermoassociative nanoparticles for drug delivery. Carbohydr Polym 111:892–900

    Article  CAS  PubMed  Google Scholar 

  • Mocanu G, Mihaï D, Dulong V, Picton L, Cerf DL (2012) New anionic crosslinked multi-responsive pullulan hydrogels. Carbohydr Polym 87:1440–1446

    Article  CAS  Google Scholar 

  • Myung D, Waters D, Wiseman M, Duhamel P-E, Noolandi J, Ta CN, Frank CW (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19:647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Na K, Bae YH (2002) Self-assembled hydrogel nanoparticles responsive to tumor extracellular pH from pullulan derivative/sulfonamide conjugate: characterization, aggregation, and adriamycin release in vitro. Pharm Res 19:681–688

    Article  CAS  PubMed  Google Scholar 

  • Na K, Park KH, Kim SW, Bae YH (2000) Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2). J Control Rel 69:225–236

    Article  CAS  Google Scholar 

  • Ouchi T, Minari T, Ohya Y (2004) Synthesis of poly(L-lactide)-grafted pullulan through coupling reaction between amino group end-capped poly(L-lactide) and carboxymethyl pullulan and its aggregation behavior in water. J Polym Sci A Polym Chem 42(21):5482–5487

    Article  CAS  Google Scholar 

  • Pala S, Ghorai S, Dash MK, Ghosh S, Udayabhanu G (2011) Flocculation properties of polyacrylamide grafted carboxymethyl guar gum (CMG-g-PAM) synthesised by conventional and microwave assisted method. J Hazard Mater 192:1580–1588

    Article  Google Scholar 

  • Parvathy KS, Susheelamma NS, Tharanathan RN, Gaonkar AK (2005) A simple non-aqueous method for carboxymethylation of galactomannans. Carbohydr Polym 62:137–141

    Article  CAS  Google Scholar 

  • Patel VR, Amiji MM (1996) Preparation and characterization of freeze-dried chitosan-poly(ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharm Res 13:588–593

    Article  CAS  PubMed  Google Scholar 

  • Patil JS, Kamalapur MV, Marapur SC, Kadam DV (2010) Ionotropic gelation and polyelectrolyte complexation: the novel techniques to design hydrogel particulate sustained, modulated drug delivery system: A review. Dig J Nanomate Biostruct 5:241–248

    Google Scholar 

  • Phadke KV, Manjeshwar LS, Aminabhavi TM (2014) Biodegradable polymeric microspheres of gelatin and carboxymethyl guar gum for controlled release of theophylline. Polym Bull 71:1625–1643

    Article  CAS  Google Scholar 

  • Ray R, Pal R, Karan S, Sa B, Chatterjee TK (2010a) Evaluation of pharmacological activities of ibuprofen loaded interpenetrating polymer network (IPN) beads from sodium carboxymethyl xanthan and sodium alginate on rats. Pharmacologyonline 2:719–736

    Google Scholar 

  • Ray S, Banerjee S, Maiti S, Laha B, Barik S, Sa B, Bhattacharyya UK (2010b) Novel interpenetrating network microspheres of xanthan gum–poly (vinyl alcohol) for the delivery of diclofenac sodium to the intestine—in vitro and in vivo evaluation. Drug Deliv 17:508–519

    Google Scholar 

  • Ray S, Maiti S, Sa B (2008) Preliminary investigation on the development of diltiazem resin complex loaded carboxymethyl xanthan beads. AAPS Pharm Sci Tech 9:295–301

    Article  CAS  Google Scholar 

  • Reddy T, Tammishetti S (2002) Gastric resistant microbeads of metal ion cross-linked carboxymethyl guar gum for oral drug delivery. J Microencapsul 19:311–318

    Article  CAS  PubMed  Google Scholar 

  • Rokhade AP, Agnihotri SA, Patil SA, Mallikarjun NN, Kulkarni PV, Aminabhavi TM (2006) Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydr Polym 65:243–252

    Article  CAS  Google Scholar 

  • Satish CS, Satish KP, Shivakumar HG (2006) Hydrogels as controlled drug delivery systems: synthesis, crosslinking, water and drug transport mechanism. Indian J Pharm Sci 68:133–140

    Article  CAS  Google Scholar 

  • Setty CM (2005) Development and evaluation of novel microparticulate drug delivery system using natural polymer. Ph.D. thesis, Jadavpur University, Kolkata, India

    Google Scholar 

  • Setty CM, Sahoo SS, Sa B (2005) Alginate-coated alginate-polyethyleneimine beads for prolonged release of furosemide in simulated intestinal fluid. Drug Dev Ind Pharm 31:435–446

    Article  CAS  PubMed  Google Scholar 

  • Shingel KI (2004) Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide, Pullulan. Carbohydr Res 339:447–460

    Article  CAS  PubMed  Google Scholar 

  • Soppimath KS, Kulkarni AR, Aminabhavi TM (2000) Controlled release of antihypertensive drug from the interpenetrating network poly(vinyl alcohol)-guar gum hydrogel microspheres. J Biomater Sci Polym Ed 11:27–43

    Article  CAS  PubMed  Google Scholar 

  • Soumya RS, Ghosh S, Abraham ET (2010) Preparation and characterization of guar gum nanoparticles. Int J Biol Macromol 46:267–269

    Article  CAS  PubMed  Google Scholar 

  • Studenovsky M, Pola R, Pechar M, Etrych T, Ulbrich K, Kovar L, et al.(2012) Polymer carriers for anticancer drugs targeted to EGF receptor. Macromol Biosci 12:1714–1720

    Google Scholar 

  • Sullad AG, Manjeshwar LS, Aminabhavi TM (2011) Microspheres of carboxymethyl guar gum for in vitro release of abacavir sulfate: preparation and characterization. J Appl Polym Sci 122:452–460

    Article  CAS  Google Scholar 

  • Tang Y, Sun J, Fan H, Zhang X (2012) An improved complex gel of modified gellan gum and carboxymethyl chitosan for chondrocytes encapsulation. Carbohydr Polym 88:46–53

    Article  CAS  Google Scholar 

  • Thimma RT, Tammishetti S (2003) Study of complex coacervation of gelatin with sodium carboxymethyl guar gum: Microencapsulation of clove oil and sulphamethoxazole. J Microencapsul 20:203–210

    Article  CAS  PubMed  Google Scholar 

  • Thimma RT, Tammishetti S (2001) Barium chloride crosslinked carboxymethyl guar gum beads for gastrointestinal drug delivery. J Appl Polym Sci 82:3084–3090

    Article  CAS  Google Scholar 

  • Whistler RL, BeMiller JN (1958) Alkaline degradation of polysaccharides. Adv Carbohydr Chem 13:289–330

    CAS  PubMed  Google Scholar 

  • Wu S, Jin Z, Kim JM, Tong Q, Chen H (2009) Graft copolymerization of methyl acrylate onto pullulan using ceric ammonium nitrate as initiator. Carbohydr Polym 76:129–132

    Article  CAS  Google Scholar 

  • Yue Y, Eun JS, Lee MK, Seo SY (2012) Synthesis and characterization of G5 PAMAM dendrimer containing daunorubicin for targeting cancer cells. Arch Pharm Res 35:343–349

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Cai Z, Sun Y, Yu F, Chen Y, Sun B (2012) Folate-conjugated β-cyclodextrin from click chemistry strategy and for tumor-targeted drug delivery. J Biomed Mater Res A 100:2441–2449

    PubMed  Google Scholar 

  • Zhang J, Peppas NA (2000) Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules 33:102–107

    Article  CAS  Google Scholar 

  • Zhao P, Wang H, Yu M, Liao Z, Wang X, Zhang F et al (2012) Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation. Eur J Pharm Biopharm 81:248–256

    Article  CAS  PubMed  Google Scholar 

  • Zohuriaan-Mehr MJ (2005) Advances in chitin and chitosan modification through graft copolymerization: a comprehensive review. Iranian Polym J 14:235–265

    CAS  Google Scholar 

  • Zwicke GL, Mansoori GA, Jeffery CJ (2012) Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev 3:18496

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabyasachi Maiti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Maiti, S., Jana, S. (2017). Carboxymethyl Polysaccharide-Based Multiunit Hydrogel Systems for Drug Delivery. In: Jana, S., Jana, S. (eds) Particulate Technology for Delivery of Therapeutics. Springer, Singapore. https://doi.org/10.1007/978-981-10-3647-7_7

Download citation

Publish with us

Policies and ethics