Skip to main content

Productivity in Global Aquaculture

  • Reference work entry
  • First Online:
Handbook of Production Economics

Abstract

This chapter provides insights on productivity in aquaculture based on production economic studies of several farmed species in different countries. We first survey studies of bioeconomic modeling of aquaculture production, and the farmer’s optimization problem. Next, we look at empirical studies of productivity and efficiency. Aquaculture is an industry with considerable production and price risk, and we survey econometric studies which estimate the structure of risk and farmers’ risk preferences and behavior. Studies of relationships between productivity and environmental factors, which are today one of the main barriers for further production growth, are discussed separately. We also present studies of agglomeration economies in aquaculture, including economies and diseconomies of geographic farm density. Finally, we discuss the challenge of growing aquaculture sustainably through productivity growth and lower external environmental footprints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 339.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recently, nonparametric SF models have been developed to avoid this problem. See Parmeter et al. [95], Zhou, Wang, and Kumbhakar (2020), and references in there.

References

  1. FAO (2021) Fishery and Aquaculture Statistics. Global production by production source 1950–2019. FishStatJ: universal software for fishery statistical time series. www.fao.org/fishery/statistics/software/fishstatj/en

  2. Bostock J, McAndrew B, Richards R et al (2010) Aquaculture: global status and trends. Philos Trans R Soc B Biol Sci 365:2897–2912. https://doi.org/10.1098/rstb.2010.0170

    Article  Google Scholar 

  3. Bosma RH, Verdegem MCJ (2011) Sustainable aquaculture in ponds: principles, practices and limits. Livest Sci 139:58–68. https://doi.org/10.1016/j.livsci.2011.03.017

    Article  Google Scholar 

  4. Neiland AE, Soley N, Varley JB, Whitmarsh DJ (2001) Shrimp aquaculture: economic perspectives for policy development. Mar Policy 25:265–279. https://doi.org/10.1016/S0308-597X(01)00017-3

    Article  Google Scholar 

  5. Asche F (2008) Farming the sea. Mar Resour Econ 23:527–547. https://doi.org/10.2307/42629678

    Article  Google Scholar 

  6. Asche F, Roll KH, Tveterås R (2012a) Innovations through the supply chain and increased production – the Case of aquaculture. In: Frick J, Laugen B (eds) APMS 2011, IFIP AICT 384. Springer, Berlin/Heidelberg, pp 604–612

    Google Scholar 

  7. Asche F, Roll KH, Tveterås R (2012b) Innovations and productivity performance in salmon aquaculture. In: Frick J, Laugen B (eds) APMS 2011, IFIP AICT 384. Springer, Berlin/Heidelberg, pp 613–620

    Google Scholar 

  8. Delgado CL, Wada N, Rosegrant MW et al (2003) Outlook for fish to 2020: meeting global demand, Washington, DC/Penang, IFPRI and WorldFish Center

    Google Scholar 

  9. Kobayashi M, Msangi S, Batka M et al (2015) Fish to 2030: the role and opportunity for aquaculture. Aquac Econ Manag 19:282–300. https://doi.org/10.1080/13657305.2015.994240

    Article  Google Scholar 

  10. Abate TG, Nielsen R, Tveterås R (2016) Stringency of environmental regulation and aquaculture growth: a cross-country analysis. Aquac Econ Manag 20:201–221. https://doi.org/10.1080/13657305.2016.1156191

    Article  Google Scholar 

  11. Garlock T, Asche F, Anderson J et al (2020) A global blue revolution: aquaculture growth across regions, species, and countries. Rev Fish Sci Aquac 28:107–116. https://doi.org/10.1080/23308249.2019.1678111

    Article  Google Scholar 

  12. Asche F, Bjørndal T (2011) The economics of salmon aquaculture, 2nd edn. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  13. Llorente I, Luna L (2016) Bioeconomic modelling in aquaculture: an overview of the literature. Aquac Int 24:931–948. https://doi.org/10.1007/s10499-015-9962-z

    Article  Google Scholar 

  14. Allen GP, Botsford LW, Schurr AM, Johnston WE (1984) Bioeconomics of aquaculture. Elsevier, Amsterdam

    Google Scholar 

  15. Leung P (1994) Bioeconomic modeling in aquaculture after two decades. In: Shang YC, Leung PS, Lee CS, Su MSLI (eds) Socioeconomics of aquaculture. Tungkang Marine Laboratory, Tungkang, pp 115–137

    Google Scholar 

  16. Cacho OJ (1997) Systems modelling and bioeconomic modelling in aquaculture. Aquac Econ Manag 1:45–64. https://doi.org/10.1080/13657309709380202

    Article  Google Scholar 

  17. Pomeroy R, Bravo-Ureta BE, Solís D, Johnston RJ (2008) Bioeconomic modelling and salmon aquaculture: an overview of the literature. Int J Environ Pollut 33:485–500. https://doi.org/10.1504/IJEP.2008.020574

    Article  Google Scholar 

  18. Karp L, Sadeh A, Griffin WL (1986) Cycles in agricultural production: the case of aquaculture. Am J Agric Econ 68:553–561. https://doi.org/10.2307/1241540

    Article  Google Scholar 

  19. Leung PS, Shang YC (1989) Modeling prawn production management system: a dynamic Markov decision approach. Agric Syst 29:5–20. https://doi.org/10.1016/0308-521X(89)90067-X

    Article  Google Scholar 

  20. Bjørndal T (1988) Optimal harvesting of farmed fish. Mar Resour Econ 5:139–159

    Article  Google Scholar 

  21. Arnason R (1992) Optimal feeding schedules and harvesting time in aquaculture. Mar Resour Econ 7:15–35

    Article  Google Scholar 

  22. Heaps T (1993) The optimal feeding of farmed fish. Mar Resour Econ 8:89–99. https://doi.org/10.1086/mre.8.2.42629053

    Article  Google Scholar 

  23. Heaps T (1995) Density dependent growth and the culling of farmed fish. Mar Resour Econ 10:285–298

    Article  Google Scholar 

  24. Mistiaen JA, Strand I (1998) Optimal feeding and harvest time for fish with weight-dependent prices. Mar Resour Econ 13:231–246. https://doi.org/10.1086/mre.13.4.42629239

    Article  Google Scholar 

  25. Yu R, Leung P (2006) Optimal partial harvesting schedule for aquaculture operations. Mar Resour Econ 21:301–315

    Article  Google Scholar 

  26. Guttormsen AG (2008) Faustmann in the sea: optimal rotation in aquaculture. Mar Resour Econ 23:401–410. https://doi.org/10.1086/mre.23.4.42629671

    Article  Google Scholar 

  27. Kumbhakar SC (2002a) Risk preference and productivity measurement under output price uncertainty. Empir Econ 27:461–472. https://doi.org/10.1007/s001810100091

    Article  Google Scholar 

  28. Kumbhakar SC (2002b) Risk preferences and technology: a joint analysis. Mar Resour Econ 17:77–89

    Article  Google Scholar 

  29. Tveterås R (1999) Production risk and productivity growth: some findings for Norwegian salmon aquaculture. J Prod Anal 12:161–179. https://doi.org/10.1023/A:1007863314751

    Article  Google Scholar 

  30. Just RE, Pope RD (1978) Stochastic specification of production functions and economic implications. J Econ 7:67–86

    Article  Google Scholar 

  31. Asche F, Oglend A, Selland Kleppe T (2017) Price dynamics in biological production processes exposed to environmental shocks. Am J Agric Econ 99:1246–1264. https://doi.org/10.1093/ajae/aax048

    Article  Google Scholar 

  32. Kumbhakar SC (2002c) Specification and estimation of production risk, risk preferences and technical efficiency. Am J Agric Econ 84:8–22. https://doi.org/10.2307/1245020

    Article  Google Scholar 

  33. Sharma KR, Leung P (1998) Technical efficiency of carp production in Nepal: an application of stochastic frontier production function approach. Aquac Econ Manag 2:129–140. https://doi.org/10.1080/13657309809380224

    Article  Google Scholar 

  34. Iinuma M, Sharma KR, Leung P (1999) Technical efficiency of carp pond culture in peninsula Malaysia: an application of stochastic production frontier and technical inefficiency model. Aquaculture 175:199–213. https://doi.org/10.1080/13657300009380268

    Article  Google Scholar 

  35. Sharma KR, Leung P, Chen H, Peterson A (1999) Economic efficiency and optimum stocking densities in fish polyculture: an application of data envelopment analysis (DEA) to Chinese fish farms. Aquaculture 180:207–221. https://doi.org/10.1016/S0044-8486(99)00202-1

    Article  Google Scholar 

  36. Dey MM, Paraguas FJ, Bimbao GB, Regaspi PB (2000) Technical efficiency of tilapia growout pond operations in the Philippines. Aquac Econ Manag 4:33–47. https://doi.org/10.1080/13657300009380259

    Article  Google Scholar 

  37. Karagiannis G, Katranidis SD, Tzouvelekas V (2000) Measuring technical, allocative and cost efficiencies of seabass and seabream farms in Greece. Aquac Econ Manag 4:191–208. https://doi.org/10.1080/13657300009380269

    Article  Google Scholar 

  38. Sharma KR, Leung P (2000) Technical efficiency of carp pond culture in South Asia: an application of a stochastic meta-production frontier model. Aquac Econ Manag 4:169–189. https://doi.org/10.1080/13657300009380268

    Article  Google Scholar 

  39. Awoyemi TT, Amao JO, Ehirim NC (2003) Technical efficiency in aquaculture in Oyo State, Nigeria. Indian J Agric Econ 58:812–819

    Google Scholar 

  40. Irz X, McKenzie V (2003) Profitability and technical efficiency of aquaculture systems in Pampaanga, Philippines. Aquac Econ Manag 7:195–211. https://doi.org/10.1080/13657300309380340

    Article  Google Scholar 

  41. Ara LA, Alam MF, Rahman MM, Jabbar MA (2004) Yield gaps, production losses and technical efficiency of selected groups of fish farmers in Bangladesh. Indian J Agric Econ 59:808–818

    Google Scholar 

  42. Chiang FS, Sun CH, Yu JM (2004) Technical efficiency analysis of milkfish (Chanos chanos) production in Taiwan – an application of the stochastic frontier production function. Aquaculture 230:99–116. https://doi.org/10.1016/j.aquaculture.2003.09.038

    Article  Google Scholar 

  43. Martinez-Cordero FJ, Leung PS (2004) Sustainable aquaculture and producer performance: measurement of environmentally adjusted productivity and efficiency of a sample of shrimp farms in Mexico. Aquaculture 241:249–268. https://doi.org/10.1016/j.aquaculture.2004.07.028

    Article  Google Scholar 

  44. Dey MM, Paraguas FJ, Srichantuk N et al (2005) Technical efficiency of freshwater pond polyculture production in selected Asian countries: estimation and implication. Aquac Econ Manag 9:39–63. https://doi.org/10.1080/13657300590961528

    Article  Google Scholar 

  45. Cinemre HA, Ceyhan V, Bozolu M et al (2006) The cost efficiency of trout farms in the Black Sea Region, Turkey. Aquaculture 251:324–332. https://doi.org/10.1016/j.aquaculture.2005.06.016

    Article  Google Scholar 

  46. Kaliba AR, Engle CR (2006) Productive efficiency of catfish farms in Chicot county, Arkansas. Aquac Econ Manag 10:223–243. https://doi.org/10.1080/13657300600985413

    Article  Google Scholar 

  47. Kaliba AR, Engle CR, Dorman L (2007) Efficiency change and technological progress in the U.S. catfish-processing sector, 1986 to 2005. Aquac Econ Manag 11:53–72. https://doi.org/10.1080/13657300701202718

    Article  Google Scholar 

  48. Alam F, Murshed-e-Jahan K (2008) Resource allocation efficiency of the prawn-carp farmers of Bangladesh. Aquac Econ Manag 12:188–206. https://doi.org/10.1080/13657300802332976

    Article  Google Scholar 

  49. Kareem RO, Aromolaran AB, Dipeolu AO (2009) Economic efficiency of fish farming in Ogun State, Nigeria. Aquac Econ Manag 13:39–52. https://doi.org/10.1080/13657300802679145

    Article  Google Scholar 

  50. Singh K, Dey MM, Rabbani AG et al (2009) Technical efficiency of freshwater aquaculture and its determinants in Tripura, India. Agric Econ Res Rev 22:186–195

    Google Scholar 

  51. Chang HH, Boisvert RN, Hung LY (2010) Land subsidence, production efficiency, and the decision of aquacultural firms in Taiwan to discontinue production. Ecol Econ 69:2448–2456. https://doi.org/10.1016/j.ecolecon.2010.07.020

    Article  Google Scholar 

  52. Nilsen OB (2010) Learning-by-doing or technological leapfrogging: production frontiers and efficiency measurement in Norwegian salmon aquaculture. Aquac Econ Manag 14:97–119. https://doi.org/10.1080/13657301003776649

    Article  Google Scholar 

  53. Ogundari K, Akinbogun OO (2010) Modeling technical efficiency with production risk: a study of fish farms in Nigeria. Mar Resour Econ 25:295–308

    Article  Google Scholar 

  54. Onumah EE, Brümmer B, Hörstgen-Schwark G (2010) Elements which delimitate technical efficiency of fish farms in Ghana. J World Aquacult Soc 41:506–518. https://doi.org/10.1111/j.1749-7345.2010.00391.x

    Article  Google Scholar 

  55. Alam F (2011) Measuring technical, allocative and cost efficiency of pangas (Pangasius hypophthalmus: Sauvage 1878) fish farmers of Bangladesh. Aquac Res 42:1487–1500. https://doi.org/10.1111/j.1365-2109.2010.02741.x

    Article  Google Scholar 

  56. Nielsen R (2011) Green and technical efficient growth in Danish fresh water aquaculture. Aquac Econ Manag 15:262–277. https://doi.org/10.1080/13657305.2011.624574

    Article  Google Scholar 

  57. Pantzios CJ, Karagiannis G, Tzouvelekas V (2011) Parametric decomposition of the input-oriented Malmquist productivity index: with an application to Greek aquaculture. J Prod Anal 36:21–31. https://doi.org/10.1007/s11123-010-0202-2

    Article  Google Scholar 

  58. Alam MF, Khan MA, Huq ASMA (2012) Technical efficiency in tilapia farming of Bangladesh: a stochastic frontier production approach. Aquac Int 20:619–634. https://doi.org/10.1007/s10499-011-9491-3

    Article  Google Scholar 

  59. Asche F, Roll KH (2013) Determinants of inefficiency in Norwegian salmon aquaculture. Aquac Econ Manag 17:300–321. https://doi.org/10.1080/13657305.2013.812154

    Article  Google Scholar 

  60. Asche F, Guttormsen AG, Nielsen R (2013) Future challenges for the maturing Norwegian salmon aquaculture industry: an analysis of total factor productivity change from 1996 to 2008. Aquaculture 396–399:43–50. https://doi.org/10.1016/j.aquaculture.2013.02.015

    Article  Google Scholar 

  61. Begum EA, Hossain MI, Papanagiotou E (2013) Technical efficiency of shrimp farming in Bangladesh: an application of the stochastic production frontier approach. J World Aquacult Soc 44:641–654. https://doi.org/10.1111/jwas.12062

    Article  Google Scholar 

  62. Bukenya JO, Hyuha TS, Molnar J, Twinamasiko J (2013) Efficiency of resource use among pond fish farmers in Central Uganda: a stochastic frontier production function approach. Aquac Econ Manag 17:148–170. https://doi.org/10.1080/13657305.2013.772264

    Article  Google Scholar 

  63. Arita S, Leung P (2014) A technical efficiency analysis of Hawaii’s aquaculture industry. J World Aquacult Soc 45:312–321. https://doi.org/10.1111/jwas.12124

    Article  Google Scholar 

  64. Nguyen KT, Fisher TCG (2014) Efficiency analysis and the effect of pollution on shrimp farms in the Mekong River Delta. Aquac Econ Manag 18:325–343. https://doi.org/10.1080/13657305.2014.959209

    Article  Google Scholar 

  65. Schrobback P, Pascoe S, Coglan L (2014) Impacts of introduced aquaculture species on markets for native marine aquaculture products: the case of edible oysters in Australia. Aquac Econ Manag. https://doi.org/10.1080/13657305.2014.926465

  66. Iliyasu A, Mohamed ZA (2015) Technical efficiency of tank culture systems in Peninsular Malaysia: an application of Data Envelopment Analysis. Aquac Econ Manag 19:372–386. https://doi.org/10.1080/13657305.2015.1082118

    Article  Google Scholar 

  67. Iliyasu A, Mohamed ZA, Hashim M (2015) Productivity growth, technical change and efficiency change of the Malaysian cage fish farming: an application of Malmquist Productivity Index approach. Aquac Int 23:1013–1024. https://doi.org/10.1007/s10499-014-9860-9

    Article  Google Scholar 

  68. Begum MEA, Nastis SA, Papanagiotou E (2016) Determinants of technical efficiency of freshwater prawn farming in southwestern Bangladesh. J Agric Rural Dev Trop Subtrop 117:99–112

    Google Scholar 

  69. Iliyasu A, Mohamed ZA (2016) Evaluating contextual factors affecting the technical efficiency of freshwater pond culture systems in Peninsular Malaysia: a two-stage DEA approach. Aquac Rep 3:12–17. https://doi.org/10.1016/j.aqrep.2015.11.002

    Article  Google Scholar 

  70. Sandvold HN (2016) Technical inefficiency, cost frontiers and learning-by-doing in Norwegian farming of juvenile salmonids. Aquac Econ Manag 20:382–398. https://doi.org/10.1080/13657305.2016.1224659

    Article  Google Scholar 

  71. Anh Ngoc PT, Gaitán-Cremaschi D, Meuwissen MPM et al (2018) Technical inefficiency of Vietnamese pangasius farming: a data envelopment analysis. Aquac Econ Manag 22:229–243. https://doi.org/10.1080/13657305.2017.1399296

    Article  Google Scholar 

  72. Nguyen LA, Pham TBV, Bosma R et al (2018) Impact of climate change on the technical efficiency of striped catfish, Pangasianodon hypophthalmus, farming in the Mekong Delta, Vietnam. J World Aquacult Soc 49:570–581. https://doi.org/10.1111/jwas.12488

    Article  Google Scholar 

  73. Ton Nu Hai A, Bui Dung T, Speelman S (2018) Analyzing the variations in cost-efficiency of marine cage lobster aquaculture in Vietnam: a two-stage bootstrap DEA approach. Aquac Econ Manag 22:458–473. https://doi.org/10.1080/13657305.2018.1429032

    Article  Google Scholar 

  74. Bayazid Y, Umetsu C, Hamasaki H, Miyanishi T (2019) Measuring the efficiency of collective floodplain aquaculture of Bangladesh using Data Envelopment Analysis. Aquaculture 503:537–549. https://doi.org/10.1016/j.aquaculture.2019.01.007

    Article  Google Scholar 

  75. Forleo MB, Romagnoli L, Fanelli RM et al (2019) Assessing the efficiency of the Italian aquaculture firms. Aquac Econ Manag 23:382–409. https://doi.org/10.1080/13657305.2019.1641569

    Article  Google Scholar 

  76. Mitra S, Khan MA, Nielsen R (2019) Credit constraints and aquaculture productivity. Aquac Econ Manag 23:410–427. https://doi.org/10.1080/13657305.2019.1641571

    Article  Google Scholar 

  77. Rodrigues WS, Mauad JRC, Vogel E et al (2019) Sustainability and technical efficiency of fish hatcheries in the state of Mato Grosso do Sul, Brazil. Aquaculture 500:228–236. https://doi.org/10.1016/j.aquaculture.2018.10.024

    Article  Google Scholar 

  78. Scuderi B, Chen X (2019) Production efficiency in New England’s oyster aquaculture industry. Aquac Econ Manag 23:45–64. https://doi.org/10.1080/13657305.2018.1449272

    Article  Google Scholar 

  79. Aponte FR (2020) Firm dispersion and total factor productivity: are Norwegian salmon producers less efficient over time? Aquac Econ Manag 24:161–180. https://doi.org/10.1080/13657305.2019.1677803

    Article  Google Scholar 

  80. Aripin A, Coglan L, Pascoe S, Hoang VN (2020) Productive efficiency and capacity utilization of sea bass grow-out culture in peninsular Malaysia. Aquac Econ Manag 24:102–121. https://doi.org/10.1080/13657305.2019.1661045

    Article  Google Scholar 

  81. Long LK, Van Thap L, Hoai NT (2020a) An application of data envelopment analysis with the double bootstrapping technique to analyze cost and technical efficiency in aquaculture: do credit constraints matter? Aquaculture 525:735290. https://doi.org/10.1016/j.aquaculture.2020.735290

    Article  Google Scholar 

  82. Long LK, Van Thap L, Hoai NT, Pham TTT (2020b) Data envelopment analysis for analyzing technical efficiency in aquaculture: the bootstrap methods. Aquac Econ Manag 24:422–446. https://doi.org/10.1080/13657305.2019.1710876

    Article  Google Scholar 

  83. Mitra S, Khan MA, Nielsen R, Islam N (2020) Total factor productivity and technical efficiency differences of aquaculture farmers in Bangladesh: do environmental characteristics matter? J World Aquacult Soc 51:918–930. https://doi.org/10.1111/jwas.12666

    Article  Google Scholar 

  84. Fernández Sánchez JL, Llorente García I, Luna M (2020) Technical efficiency of sea bass and sea bream farming in the Mediterranean Sea by European firms: a stochastic production frontier (SPF) approach. Aquac Econ Manag 24:526–539. https://doi.org/10.1080/13657305.2020.1840660

    Article  Google Scholar 

  85. Gutiérrez E, Lozano S, Guillén J (2020) Efficiency data analysis in EU aquaculture production. Aquaculture 520:734962

    Article  Google Scholar 

  86. Ton Nu Hai A, Speelman S (2020) Economic-environmental trade-offs in marine aquaculture: the case of lobster farming in Vietnam. Aquaculture 516:734593. https://doi.org/10.1016/j.aquaculture.2019.734593

    Article  Google Scholar 

  87. Ton Nu Hai A, Van Meensel J, Speelman S (2020) The factors influencing environmental performance of marine aquaculture: a combined material balance-based and meta-frontier approach. J Clean Prod 269:122342. https://doi.org/10.1016/j.jclepro.2020.122342

    Article  Google Scholar 

  88. Long LK (2021) Cost efficiency analysis in aquaculture: data envelopment analysis with a two-stage bootstrapping technique. Aquac Econ Manag 10:1–20. https://doi.org/10.1080/13657305.2021.1896605

    Article  Google Scholar 

  89. Nielsen R, Ankamah-Yeboah I, Llorente I (2021) Technical efficiency and environmental impact of seabream and seabass farms. Aquac Econ Manag 25:106–125. https://doi.org/10.1080/13657305.2020.1840662

    Article  Google Scholar 

  90. Khan MA, Roll KH, Guttormsen A (2021) Profit efficiency of Pangas (Pangasius hypophthalmus) pond fish farming in Bangladesh – the effect of farm size. Aquaculture 539:736662. https://doi.org/10.1016/j.aquaculture.2021.736662

    Article  Google Scholar 

  91. Hukom V, Nielsen R, Nielsen M (2021) Effects of co-management on technical efficiency and environmental stressors: an application to small-scale shrimp polyculture in Indonesia. Aquac Econ Manag 20:1–26. https://doi.org/10.1080/13657305.2021.1897190

    Article  Google Scholar 

  92. Salvanes KG (1989) The structure of the Norwegian fish farming industry: an empirical analysis of economies of scale and substitution possibilities. Mar Resour Econ 6:349–373. https://doi.org/10.1086/mre.6.4.42628827

    Article  Google Scholar 

  93. Salvanes KG (1993) Public regulation and production factor misallocation. A restricted cost function for the Norwegian aquaculture industry. Mar Resour Econ 8:50–64

    Article  Google Scholar 

  94. Bjørndal T, Salvanes KG (1995) Gains from deregulation? An empirical test for efficiency gains in the Norwegian fish farming industry. J Agric Econ 46:113–126. https://doi.org/10.1111/j.1477-9552.1995.tb00756.x

    Article  Google Scholar 

  95. Parmeter CF, Wang HJ, Kumbhakar SC (2017) Nonparametric estimation of the determinants of inefficiency. J Prod Anal 47:205–221. https://doi.org/10.1007/s11123-016-0479-x

    Article  Google Scholar 

  96. Simar L, Wilson PW (2007) Estimation and inference in two-stage, semi-parametric models of production processes. J Econ 136:31–64. https://doi.org/10.1016/j.jeconom.2005.07.009

    Article  Google Scholar 

  97. Rahman MT, Nielsen R, Khan MA, Asmild M (2019) Efficiency and production environmental heterogeneity in aquaculture: a meta-frontier DEA approach. Aquaculture 509:140–148. https://doi.org/10.1016/j.aquaculture.2019.05.002

    Article  Google Scholar 

  98. Arquitt S, Xu H, Johnstone R (2005) A system dynamics analysis of boom and bust in the shrimp aquaculture industry. Syst Dyn Rev 21:305–324. https://doi.org/10.1002/sdr.313

    Article  Google Scholar 

  99. Asche F, Tveterås R (1999) Modeling production risk with a two-step procedure. J Agric Resour Econ 24:424–439. https://doi.org/10.2307/40987031

    Article  Google Scholar 

  100. Khan A, Guttormsen A, Roll KH (2018) Production risk of pangas (Pangasius hypophthalmus) fish farming. Aquac Econ Manag 22:192–208. https://doi.org/10.1080/13657305.2017.1284941

    Article  Google Scholar 

  101. Kumbhakar SC, Tveterås R (2003) Risk preferences, production risk and firm heterogeneity. Scand J Econ 105:275–293. https://doi.org/10.1111/1467-9442.t01-1-00009

    Article  Google Scholar 

  102. Kumbhakar SC, Tsionas EG (2009) Nonparametric estimation of production risk and risk preference functions. Adv Econ 25:223–260. https://doi.org/10.1108/S0731-9053(2009)0000025010

    Article  Google Scholar 

  103. Sarker MAA, Arshad FM, Alam MF et al (2016) Stochastic modeling of production risk and technical efficiency of Thai koi (Anabas testudineus) farming in Northern Bangladesh. Aquac Econ Manag 20:165–184. https://doi.org/10.1080/13657305.2016.1156189

    Article  Google Scholar 

  104. Little DC, Young JA, Zhang W et al (2018) Sustainable intensification of aquaculture value chains between Asia and Europe: a framework for understanding impacts and challenges. Aquaculture 493:338–354. https://doi.org/10.1016/j.aquaculture.2017.12.033

    Article  Google Scholar 

  105. Naylor RL, Hardy RW, Bureau DP et al (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci U S A 106:15103–15110. https://doi.org/10.1073/pnas.0905235106

    Article  Google Scholar 

  106. Tacon AGJ, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285:146–158. https://doi.org/10.1016/j.aquaculture.2008.08.015

    Article  Google Scholar 

  107. Anh PT, Kroeze C, Bush SR, Mol APJ (2010) Water pollution by Pangasius production in the Mekong Delta, Vietnam: causes and options for control. Aquac Res 42:108–128. https://doi.org/10.1111/j.1365-2109.2010.02578.x

    Article  Google Scholar 

  108. Liu Y, Sumaila UR (2010) Estimating pollution abatement costs of salmon aquaculture: a joint production approach. Land Econ 86:569–584

    Article  Google Scholar 

  109. Pincinato RBM, Asche F, Roll KH (2021) Escapees in salmon aquaculture: a multi-output approach. Land Econ (forthcoming). https://doi.org/10.3368/wple.97.2.090419-0128R

  110. Nielsen R (2012) Introducing individual transferable quotas on nitrogen in Danish fresh water aquaculture: production and profitability gains. Ecol Econ 75:83–90. https://doi.org/10.1016/j.ecolecon.2012.01.002

    Article  Google Scholar 

  111. Aponte FR, Tveterås S (2019) On the drivers of cost changes in the Norwegian salmon aquaculture sector: a decomposition of a flexible cost function from 2001 to 2014. Aquac Econ Manag 23:276–291. https://doi.org/10.1080/13657305.2018.1551438

    Article  Google Scholar 

  112. Aerni P (2004) Risk, regulation and innovation: the case of aquaculture and transgenic fish. Aquat Sci 66:327–341. https://doi.org/10.1007/s00027-004-0715-8

    Article  Google Scholar 

  113. Asche F, Guttormsen AG, Tveterås R (1999) Environmental problems, productivity and innovations in Norwegian salmon aquaculture. Aquac Econ Manag 3:19–29. https://doi.org/10.1080/13657309909380230

    Article  Google Scholar 

  114. Asche F, Smith MD (2018) Induced innovation in fisheries and aquaculture. Food Policy 76:1–7

    Article  Google Scholar 

  115. Kumar G, Engle CR (2016) Technological advances that led to growth of shrimp, salmon, and tilapia farming. Rev Fish Sci Aquac 24:136–152. https://doi.org/10.1080/23308249.2015.1112357

    Article  Google Scholar 

  116. Sandvold HN, Tveterås R (2014) Innovation and productivity growth in Norwegian production of juvenile salmonids. Aquac Econ Manag 18:149–168. https://doi.org/10.1080/13657305.2014.903313

    Article  Google Scholar 

  117. Asche F, Anderson JL, Botta R et al (2020) The economics of shrimp disease. J Invertebr Pathol 2020:107397. https://doi.org/10.1016/j.jip.2020.107397

    Article  Google Scholar 

  118. Iversen A, Asche F, Hermansen Ø, Nystøyl R (2020) Production cost and competitiveness in major salmon farming countries 2003–2018. Aquaculture 522:735089. https://doi.org/10.1016/j.aquaculture.2020.735089

    Article  Google Scholar 

  119. Abolofia J, Asche F, Wilen JE (2017) The cost of lice: quantifying the impacts of parasitic sea lice on farmed salmon. Mar Resour Econ 32:329–349. https://doi.org/10.1086/691981

    Article  Google Scholar 

  120. Dresdner J, Chávez C, Quiroga M et al (2019) Impact of Caligus treatments on unit costs of heterogeneous salmon farms in Chile. Aquac Econ Manag 23:1–27. https://doi.org/10.1080/13657305.2018.1449271

    Article  Google Scholar 

  121. Froehlich HE, Runge CA, Gentry RR et al (2018) Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc Natl Acad Sci U S A 115:5295–5300. https://doi.org/10.1073/pnas.1801692115

    Article  Google Scholar 

  122. Poore J, Nemecek T (2018) Reducing food’s environmental impacts through producers and consumers. Science 360:987–992. https://doi.org/10.1126/science.aaq0216

    Article  Google Scholar 

  123. Marshall A (1920) Principles of economics. Macmillan, London

    Google Scholar 

  124. Paci R, Usai S (1999) Externalities, knowledge spillovers and the spatial distribution of innovation. GeoJournal 49:381–390. https://doi.org/10.1023/A:1007192313098

    Article  Google Scholar 

  125. Rosenthal SS, Strange WC (2003) Geography, industrial organization, and agglomeration. Rev Econ Stat 85:377–393

    Article  Google Scholar 

  126. Jacobs J (1969) The economy of cities. Vintage Books, New York

    Google Scholar 

  127. Melo PC, Graham DJ, Noland RB (2009) A meta-analysis of estimates of urban agglomeration economies. Reg Sci Urban Econ 39:332–342. https://doi.org/10.1016/j.regsciurbeco.2008.12.002

    Article  Google Scholar 

  128. Carlsson B, Stankiewicz R (1991) Evolutionary economics. J Evol Econ 1(2):93–118. https://doi.org/10.4324/9781315493053

    Article  Google Scholar 

  129. Freeman C (1995) The “national system of innovation” in historical perspective. Camb J Econ 19:5–24. https://doi.org/10.1093/oxfordjournals.cje.a035309

    Article  Google Scholar 

  130. Doloreux D, Isaksen A, Aslesen HW, Melançon Y (2009) A comparative study of the aquaculture innovation systems in Quebec’s coastal region and Norway. Eur Plan Stud 17:963–981. https://doi.org/10.1080/09654310902949240

    Article  Google Scholar 

  131. Bergesen O, Tveterås R (2019) Innovation in seafood value chains: the case of Norway. Aquac Econ Manag 23:1–29. https://doi.org/10.1080/13657305.2019.1632391

    Article  Google Scholar 

  132. Tveteras R (2002) Industrial agglomeration and production costs in Norwegian salmon aquaculture. Mar Resour Econ 17:1–22

    Article  Google Scholar 

  133. Tveteras R, Battese GE (2006) Agglomeration externalities, productivity, and technical inefficiency. J Reg Sci 46:605–625. https://doi.org/10.1111/j.1467-9787.2006.00470.x

    Article  Google Scholar 

  134. Asche F, Roll KH, Tveterås R (2016) Profiting from agglomeration? Evidence from the salmon aquaculture industry. Reg Stud 50:1742–1754. https://doi.org/10.1080/00343404.2015.1055460

    Article  Google Scholar 

  135. Porter ME (2000) Location, competition, and economic development: local clusters in a global economy. Econ Dev Q 14:15–34. https://doi.org/10.1177/089124240001400105

    Article  Google Scholar 

  136. Jovanovic B, Rob R (1989) The growth and diffusion of knowledge. Rev Econ Stud 56:569–582. https://doi.org/10.2307/2297501

    Article  Google Scholar 

  137. Rauch JE (1993) Productivity gains from geographic concentration of human capital: evidence from the cities. J Urban Econ 34:380–400

    Article  Google Scholar 

  138. Rahman MT, Nielsen R, Khan MA (2019) Agglomeration externalities and technical efficiency: an empirical application to the pond aquaculture of Pangas and Tilapia in Bangladesh. Aquac Econ Manag 23:158–187. https://doi.org/10.1080/13657305.2018.1531948

    Article  Google Scholar 

  139. Otsuka A, Goto M, Sueyoshi T (2010) Industrial agglomeration effects in Japan: productive efficiency, market access, and public fiscal transfer. Pap Reg Sci 89:819–840. https://doi.org/10.1111/j.1435-5957.2010.00286.x

    Article  Google Scholar 

  140. Ahmed N (2007) Economics of aquaculture feeding practices: Bangladesh. In: Hasan MR (ed) Economics of aquaculture feeding practices in selected Asian countries. FAO, Rome, pp 33–64

    Google Scholar 

  141. Hu C, Zhang X, Reardon T, Hernandez R (2019) Value-chain clusters and aquaculture innovation in Bangladesh. Food Policy 83:310–326. https://doi.org/10.1016/j.foodpol.2017.07.009

    Article  Google Scholar 

  142. Khan MA (2012) Efficiency, risk and management of fisheries sector in Bangladesh. PhD thesis, Norwegian University of Life Sciences

    Google Scholar 

  143. Islam MS (2008) From pond to plate: towards a twin-driven commodity chain in Bangladesh shrimp aquaculture. Food Policy 33:209–223. https://doi.org/10.1016/j.foodpol.2007.10.002

    Article  Google Scholar 

  144. Watanabe WO, Losordo TM, Fitzsimmons K, Hanley F (2002) Tilapia production systems in the Americas: technological advances, trends, and challenges. Rev Fish Sci 10:465–498. https://doi.org/10.1080/20026491051758

    Article  Google Scholar 

  145. Gjedrem T, Robinson N, Rye M (2012) The importance of selective breeding in aquaculture to meet future demands for animal protein: a review. Aquaculture 350–353:117–129. https://doi.org/10.1016/j.aquaculture.2012.04.008

    Article  Google Scholar 

  146. Long LK (2021) Cost Efficiency Analysis in Aquaculture: Data Envelopment Analysis with a Two-Stage Bootstrapping Technique. Aquaculture Economics and Management 0(0):1–20. https://doi.org/10.1080/13657305.2021.1896605

  147. Tveterås R (2000) Flexible Panel Data Models for Risky Production Technologies with an Application to Salmon Aquaculture, Econometric Reviews 19:367–389

    Google Scholar 

  148. Zhou J, Parmeter CF, Kumbhakar SC (2020) Nonparametric estimation of the determinants of inefficiency in the presence of firm heterogeneity. Eur J Oper Res 286:1142–1152. https://doi.org/10.1016/j.ejor.2020.04.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragnar Tveteras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Asche, F., Pincinato, R.B., Tveteras, R. (2022). Productivity in Global Aquaculture. In: Ray, S.C., Chambers, R.G., Kumbhakar, S.C. (eds) Handbook of Production Economics. Springer, Singapore. https://doi.org/10.1007/978-981-10-3455-8_41

Download citation

Publish with us

Policies and ethics