Skip to main content

Rituximab and Alemtuzumab for Chronic Lymphocytic Leukemia: Basic Results and Pharmacokinetics

  • Chapter
  • First Online:
Chemotherapy for Leukemia
  • 1383 Accesses

Abstract

Rituximab is a chimeric anti-CD20 monoclonal antibody (mAb) and the first mAb to be approved for use in the treatment of cancer. The proposed mechanisms of action of rituximab include antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and induction of apoptosis. The influences of CD20 expression level, circulating soluble CD20, Fcγ receptor (FcγR) polymorphisms, complement regulatory proteins, and C1qA-276 polymorphisms on susceptibility and resistance to rituximab have been previously described. In a pharmacokinetic study, from the first to the fourth or eighth weekly dose of rituximab, post-infusion serum concentrations increased and steady-state serum concentrations were not reached. The combined use of rituximab and fludarabine, bendamustine, lenalidomide, or histone deacetylase inhibitors may be one of the optimal solutions for overcoming rituximab resistance in the treatment of chronic lymphocytic leukemia (CLL). The characteristic toxicities of rituximab are infusion reactions, late-onset neutropenia, hepatitis B virus reactivation, and opportunistic infections.

Alemtuzumab is a humanized anti-CD52 mAb and the first mAb to be approved for use in the treatment of CLL. The proposed mechanisms of action of alemtuzumab include ADCC, CDC, and induction of apoptosis. The influences of CD52 expression level, circulating soluble CD52, FcγR polymorphisms, and cytogenetic abnormalities on susceptibility and resistance to alemtuzumab have been previously described. In a pharmacokinetic study, systemic clearance decreased with repeated administration of alemtuzumab due to decreased receptor-mediated clearance. The combined use of alemtuzumab and fludarabine, cyclophosphamide, or rituximab may be one of the optimal solutions for overcoming alemtuzumab resistance in the treatment of CLL. The characteristic toxicities of alemtuzumab are infusion reactions, opportunistic infections, and cytopenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. von Mehren M, Adams GP, Weiner LM. Monoclonal antibody therapy for cancer. Annu Rev Med. 2003;54:343–69. doi:10.1146/annurev.med.54.101601.152442.

    Article  Google Scholar 

  2. Structure of rituximab. In-house data. Zenyaku Kogyo Co., Ltd.

    Google Scholar 

  3. Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R, et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83:435–45.

    CAS  PubMed  Google Scholar 

  4. Smith MR. Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene. 2003;22:7359–68. doi:10.1038/sj.onc.1206939.

    Article  CAS  PubMed  Google Scholar 

  5. Keating GM, Rituximab A. Review of its use in chronic lymphocytic leukaemia, low-grade or follicular lymphoma and diffuse large B-cell lymphoma. Drugs. 2010;70:1445–76. doi:10.2165/11201110-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  6. Villamor N, Montserrat E, Colomer D. Mechanism of action and resistance to monoclonal antibody therapy. Semin Oncol. 2003;30:424–33. doi:10.1016/S0093-7754(03)00261-6.

    Article  CAS  PubMed  Google Scholar 

  7. Cragg MS, Morgan SM, Chan HT, Morgan BP, Filatov AV, Johnson PW, et al. Complement-mediated lysis by anti-CD20 mAb correlates with segregation into lipid rafts. Blood. 2003;101:1045–52. doi:10.1182/blood-200206-1761.

    Article  CAS  PubMed  Google Scholar 

  8. Byrd JC, Kitada S, Flinn IW, Aron JL, Pearson M, Lucas D, et al. The mechanism of tumor cell clearance by rituximab in vivo in patients with B-cell chronic lymphocytic leukemia: evidence of caspase activation and apoptosis induction. Blood. 2002;99:1038–43. doi:10.1182/blood.V99.3.1038.

    Article  CAS  PubMed  Google Scholar 

  9. Alas S, Emmanouilides C, Bonavida B. Inhibition of interleukin 10 by rituximab results in down-regulation of Bcl-2 and sensitization of B-cell non-Hodgkin’s lymphoma to apoptosis. Clin Cancer Res. 2001;7:709–23.

    CAS  PubMed  Google Scholar 

  10. Deans JP, Li H, Polyak MJ. CD20-mediated apoptosis: signalling through lipid rafts. Immunology. 2002;107:176–82. doi:10.1046/j.1365-2567.2002.01495.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Janas E, Priest R, Wilde JI, White JH, Malhotra R. Rituxan (anti-CD 20 antibody)-induced translocation of CD 20 into lipid rafts is crucial for calcium influx and apoptosis. Clin Exp Immunol. 2005;139:439–46. doi:10.1111/j.1365-2249.2005.02720.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bellosillo B, Villamor N, López-Guillermo A, Marcé S, Esteve J, Campo E, et al. Complement-mediated cell death induced by rituximab in B-cell lymphoproliferative disorders is mediated in vitro by a caspase-independent mechanism involving the generation of reactive oxygen species. Blood. 2001;98:2771–7. doi:10.1182/blood.V98.9.2771.

    Article  CAS  PubMed  Google Scholar 

  13. Beum PV, Peek EM, Lindorfer MA, Beurskens FJ, Engelberts PJ, Parren PW, et al. Loss of CD20 and bound CD20 antibody from opsonized B cells occurs more rapidly because of trogocytosis mediated by Fc receptor-expressing effector cells than direct internalization by the B cells. J Immunol. 2011;187:3438–47. doi:10.4049/jimmunol.1101189.

    Article  CAS  PubMed  Google Scholar 

  14. Beers SA, French RR, Chan HT, Lim SH, Jarrett TC, Vidal RM, et al. Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection. Blood. 2010;115:5191–201. doi:10.1182/blood-2010-01-263533.

    Article  CAS  PubMed  Google Scholar 

  15. Lim SH, Vaughan AT, Ashton-Key M, Williams EL, Dixon SV, Chan HT, et al. Fc gamma receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy. Blood. 2011;118:2530–40. doi:10.1182/blood-2011-01-330357.

    Article  PubMed  Google Scholar 

  16. Manshouri T, Do K, Wang X, Giles FJ, O’Brien SM, Saffer H, et al. Circulating CD20 is detectable in the plasma of patients with chronic lymphocytic leukemia and is of prognostic significance. Blood. 2003;101:2507–13. doi:10.1182/blood-2002-06-1639.

    Article  CAS  PubMed  Google Scholar 

  17. O’Brien SM, Kantarjian H, Thomas DA, Giles FJ, Freireich EJ, Cortes J, et al. Rituximab dose-escalation trial in chronic lymphocytic leukemia. J Clin Oncol. 2001;19:2165–70.

    Article  PubMed  Google Scholar 

  18. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood. 2002;99:754–8. doi:10.1182/blood.V99.3.754.

    Article  CAS  PubMed  Google Scholar 

  19. Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21:3940–7. doi:10.1200/JCO.2003.05.013.

    Article  CAS  PubMed  Google Scholar 

  20. Cornec D, Tempescul A, Querellou S, Hutin P, Pers JO, Jamin C, et al. Identification of patients with indolent B cell lymphoma sensitive to rituximab monotherapy. Ann Hematol. 2012;91:715–21. doi:10.1007/s00277-011-1369-y.

    Article  CAS  PubMed  Google Scholar 

  21. Farag SS, Flinn IW, Modali R, Lehman TA, Young D, Byrd JC. FcγRIIIa and FcγRIIa polymorphisms do not predict response to rituximab in B-cell chronic lymphocytic leukemia. Blood. 2004;103:1472–4. doi:10.1182/blood-200307-2548.

    Article  CAS  PubMed  Google Scholar 

  22. Harjunpää A, Junnikkala S, Meri S. Rituximab (aanti-CD20) therapy of B-cell lymphomas: direct complement killing is superior to cellular effector mechanisms. Scand J Immunol. 2000;51:634–41. doi:10.1046/j.1365-3083.2000.00745.x.

    Article  PubMed  Google Scholar 

  23. Golay J, Zaffaroni L, Vaccari T, Lazzari M, Borleri GM, Bernasconi S, et al. Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood. 2000;95:3900–8.

    CAS  PubMed  Google Scholar 

  24. Golay J, Lazzari M, Facchinetti V, Bernasconi S, Borleri G, Barbui T, et al. CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: further regulation by CD55 and CD59. Blood. 2001;98:3383–9. doi:10.1182/blood.V98.12.3383.

    Article  CAS  PubMed  Google Scholar 

  25. Racila E, Link BK BK, Weng WK, Witzig TE, Ansell S, Maurer MJ, et al. A polymorphism in the complement component C1qA correlates with prolonged response following rituximab therapy of follicular lymphoma. Clin Cancer Res. 2008;14:6697–703. doi:10.1158/1078-0432.CCR-08-0745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pharmacokinetics of IDEC-C2B8 in patients with CD20 positive B-cell non-Hodgkin lymphoma. In-house data. Zenyaku Kogyo Co., Ltd.

    Google Scholar 

  27. Scheidhauer K, Wolf I, Baumgartl HJ, Von Schilling C, Schmidt B, Reidel G, et al. Biodistribution and kinetics of 131I-labelled anti-CD20 MAB IDEC-C2B8 (rituximab) in relapsed non-Hodgkin’s lymphoma. Eur J Nucl Med. 2002;29:1276–82. doi:10.1007/s00259-002-0820-7.

    Article  CAS  Google Scholar 

  28. Harjunpää A, Wiklund T, Collan J, Janes R, Rosenberg J, Lee D, et al. Complement activation in circulation and central nervous system after rituximab (Anti-CD20) treatment of B-cell lymphoma. Leuk Lymphoma. 2001;42:731–8. doi:10.3109/10428190109099335.

    Article  PubMed  Google Scholar 

  29. Gaetano ND, Xiao Y, Erba E, Bassan R, Rambaldi A, Golay J, et al. Synergism between fludarabine and rituximab revealed in a follicular lymphoma cell line resistant to the cytotoxic activity of either drug alone. Br J Haematol. 2001;114:800–9. doi:10.1046/j.1365-2141.2001.03014.x.

    Article  PubMed  Google Scholar 

  30. Chow KU, Sommerlad WD, Boehrer S, Schneider B, Seipelt G, Rummel MJ, et al. Anti-CD20 antibody (IDEC-C2B8, rituximab) enhances efficacy of cytotoxic drugs on neoplastic lymphocytes in vitro: role of cytokines, complement, and caspases. Haematologica. 2002;87:33–43.

    CAS  PubMed  Google Scholar 

  31. Fischer K, Cramer P, Busch R, Böttcher S, Bahlo J, Schubert J, et al. Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2012;30:3209–16. doi:10.1200/JCO.2011.39.2688.

    Article  CAS  PubMed  Google Scholar 

  32. Fischer K, Cramer P, Busch R, Stilgenbauer S, Bahlo J, Schweighofer CD, et al. Bendamustine combined with rituximab in patients with relapsed and/or refractory chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2011;29:3559–66. doi:10.1200/JCO.2010.33.806.

    Article  CAS  PubMed  Google Scholar 

  33. Wu L, Adams M, Carter T, Chen R, Muller G, Stirling D, et al. Lenalidomide enhances natural killer cell and monocyte-mediated antibody-dependent cellular cytotoxicity of rituximab-treated CD20+ tumor cells. Clin Cancer Res. 2008;14:4650–7. doi:10.1158/1078-0432.CCR-07-4405.

    Article  CAS  PubMed  Google Scholar 

  34. Ramsay AG, Johnson AJ, Lee AM, Gorgün G, Dieu RL, Blum W, et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest. 2008;118:2427–37. doi:10.1172/JCI35017.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ramsay AG, Gribben JG. Immune dysfunction in chronic lymphocytic leukemia T cells and lenalidomide as an immunomodulatory drug. Haematologica. 2009;94:1198–202. doi:10.3324/haematol.2009.009274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lapalombella R, Yu B, Triantafillou G, Liu Q, Butchar JP, Lozanski G, et al. Lenalidomidedown-regulatestheCD20antigenandantagonizesdirectand antibody-dependentcellularcytotoxicityofrituximabonprimarychronic lymphocytic leukemia cells. Blood. 2008;112:5180–9. doi:10.1182/blood-200801-133108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Badoux XC, Keating MJ, Wen S, Wierda WG, O’Brien SM, Faderl S, et al. Phase II study of lenalidomide and rituximab as salvage therapy for patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol. 2013;31:584–91. doi:10.1200/JCO.2012.42.862.

    Article  CAS  PubMed  Google Scholar 

  38. Shimizu R, Kikuchi J, Wada T, Ozawa K, Kano Y, Furukawa Y. HDAC inhibitors augment cytotoxic activity of rituximab by upregulating CD20 expression on lymphoma cells. Leukemia. 2010;24:1760–8. doi:10.1038/leu.2010.157.

    Article  CAS  PubMed  Google Scholar 

  39. Damm JK, Gordon S, Ehinger M, Jerkeman M, Gullberg U, Hultquist A, Drott K. Pharmacologically relevant doses of valproate upregulate CD20 expression in three diffuse large B-cell lymphoma patients in vivo. Exp Hematol Oncol. 2015;4:4. doi:10.1186/2162-3619-4-4.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Frys S, Simons Z, Hu Q, Barth MJ, Gu JJ, Mavis C, et al. Entinostat, a novel histone deacetylase inhibitor is active in B-cell lymphoma and enhances the anti-tumour activity of rituximab and chemotherapy agents. Br J Haematol. 2015;169:506–19. doi:10.1111/bjh.13318.

    Article  CAS  PubMed  Google Scholar 

  41. Winkler U, Jensen M, Manzke O, Schulz H, Diehl V, Engert A. Cytokine-release syndrome in patients with B-cell chronic lymphocytic leukemia and high lymphocyte counts after treatment with an anti-CD20 monoclonal antibody (rituximab, IDEC-C2B8). Blood. 1999;94:2217–22.

    CAS  PubMed  Google Scholar 

  42. Byrd JC, Waselenko JK, Maneatis TJ, Murphy T, Ward FT, Monahan BP, et al. Rituximab therapy in hematologic malignancy patients with circulating blood tumor cells: association with increased infusion-related side effects and rapid blood tumor clearance. J Clin Oncol. 1999;17:791–5.

    Article  CAS  PubMed  Google Scholar 

  43. Nitta E, Izutsu K, Sato T, Ota Y, Takeuchi T, Kamijo A, et al. A high incidence of late-onset neutropenia following rituximab-containing chemotherapy as a primary treatment of CD20-positive B-cell lymphoma: a single-institution study. Ann Oncol. 2007;18:364–9. doi:10.1093/annonc/mdl393.

    Article  CAS  PubMed  Google Scholar 

  44. Dunleavy K, Hakim F, Kim HK, Janik JE, Grant N, Nakayama T, et al. B-cell recovery following rituximab-based therapy is associated with perturbations in stromal derived factor-1 and granulocyte homeostasis. Blood. 2005;106:795–802. doi:10.1182/blood-2004-08-3198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stallworth JR, Jerrell JM, Tripathi A. Cost-effectiveness of hydroxyurea in reducing the frequency of pain episodes and hospitalization in pediatric sickle cell disease. Ann Hematol. 2011;90:145–50. doi:10.1002/ajh.21772.

    Article  PubMed  Google Scholar 

  46. Hui CK, Cheung WW, Zhang HY, Au WY, Yueng YH, Leung AY, et al. Kinetics and risk of de novo hepatitis B infection in HBsAg-negative patients undergoing cytotoxic chemotherapy. Gastroenterology. 2006;131:59–68. doi:10.1053/j.gastro.2006.04.015.

    Article  CAS  PubMed  Google Scholar 

  47. Yeo W, Chan TC, Leung NW, Lam WY, Mo FK, Miu Ting Chu MT, et al. Hepatitis B virus reactivation in lymphoma patients with prior resolved hepatitis B undergoing anticancer therapy with or without rituximab. J Clin Oncol. 2009;27:605–11. doi:10.1200/JCO.2008.18.0182.

    Article  CAS  PubMed  Google Scholar 

  48. Evens AM, Jovanovic BD, Su YC, Raisch DW, Ganger D, Belknap SM, et al. Rituximab-associated hepatitis B virus (HBV) reactivation in lymphoproliferative diseases: meta-analysis and examination of FDA safety reports. Ann Oncol. 2011;22:1170–80. doi:10.1093/annonc/mdq583.

    Article  CAS  PubMed  Google Scholar 

  49. Tsutsumi Y, Yamamoto Y, Ito S, Ohigashi H, Shiratori S, Naruse H, et al. Hepatitis B virus reactivation with a rituximab-containing regimen. World J Hepatol. 2015;7:2344–51. doi:10.4254/wjh.v7.i21.2344.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kusumoto S, Tanaka Y, Suzuki R, Watanabe T, Nakata M, Takasaki H, et al. Monitoring of hepatitis B virus (HBV) DNA and risk of HBV reactivation in B-cell lymphoma: a prospective observational study. Clin Infect Dis. 2015;61:719–29. doi:10.1093/cid/civ344.

    Article  CAS  PubMed  Google Scholar 

  51. Nissen JC, Hummel M, Brade J, Kruth J, Hofmann WK, Buchheidt D, et al. The risk of infections in hematologic patients treated with rituximab is not influenced by cumulative rituximab dosage – a single center experience. BMC Infect Dis. 2014;14:364. doi:10.1186/1471-2334-14-364.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Structure of alemtuzumab. In-house data. Sanofy Co., Ltd.

    Google Scholar 

  53. Dyer MJ, Hale G, Hayhoe FG, Waldmann H. Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype. Blood. 1989;73:1431–9.

    CAS  PubMed  Google Scholar 

  54. Hale G, Dyer MJ, Clark MR, Phillips JM, Marcus R, Riechmann L, et al. Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibody CAMPATH-1H. Lancet. 1988;17(2):1394–9. doi:10.1016/S0140-6736(88)90588-0.

    Article  Google Scholar 

  55. Alinari L, Lapalombella R, Andritsos L, Baiocchi RA, Lin TS, Byrd JC. Alemtuzumab (Campath-1H) in the treatment of chronic lymphocytic leukemia. Oncogene. 2007;26:3644–53. doi:10.1038/sj.onc.1210380.

    Article  CAS  PubMed  Google Scholar 

  56. Cheson BD. Monoclonal antibody therapy of chronic lymphocytic leukaemia. Best Pract Res Clin Haematol. 2010;23:133–43. doi:10.1016/j.beha.2010.01.006.

    Article  CAS  PubMed  Google Scholar 

  57. Jaglowski SM, Alinari L, Lapalombella R, Muthusamy N, Byrd JC. The clinical application of monoclonal antibodies in chronic lymphocytic leukemia. Blood. 2010;116:3705–14. doi:10.1182/blood-2010-04-001230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ginaldi L, De Martinis M, Matutes E, Farahat N, Morilla R, Dyer MJ, et al. Levels of expression of CD52 in normal and leukemic B and T cells: correlation with in vivo therapeutic responses to Campath-1H. Leuk Res. 1998;22:185–91. doi:10.1016/S0145-2126(97)00158-6.

    Article  CAS  PubMed  Google Scholar 

  59. Mone AP, Cheney C, Banks AL, Tridandapani S, Mehter N, Guster S, et al. Alemtuzumab induces caspase-independent cell death in human chronic lymphocytic leukemia cells through a lipid raft-dependent mechanism. Leukemia. 2006;20:272–9. doi:10.1038/sj.leu.2404014.

    Article  CAS  PubMed  Google Scholar 

  60. Albitar M, Do KA, Johnson MM, Giles FJ, Jilani I, O’Brien S, et al. Free circulating soluble CD52 as a tumor marker in chronic lymphocytic leukemia and its implication in therapy with anti-CD52 antibodies. Cancer. 2004;101:999–1008. doi:10.1002/cncr.20477.

    Article  CAS  PubMed  Google Scholar 

  61. Lin TS, Flinn IW, Modali R, Lehman TA, Webb J, Waymer S, et al. FCGR3A and FCGR2A polymorphisms may not correlate with response to alemtuzumab in chronic lymphocytic leukemia. Blood. 2005;105:289–91. doi:10.1182/blood-2004-02-0651.

    Article  CAS  PubMed  Google Scholar 

  62. Lozanski G, Heerema NA, Flinn IW, Smith L, Harbison J, Webb J, et al. Alemtuzumab is an effective therapy for chronic lymphocytic leukemia with p53 mutations and deletions. Blood. 2004;103:3278–81. doi:10.1182/blood-200310-3729.

    Article  CAS  PubMed  Google Scholar 

  63. A Phase II Study, including pharmacokinetics, of CAMPATH-1H in patients with B-cell chronic lymphocytic leukemia who have received treatment with a purine analogue (CAM213 study). In-house data. Sanofy Co., Ltd.

    Google Scholar 

  64. Hutchins JT, Kull Jr FC, Bynum J, Knick VC, Thurmond LM, Ray P. Improved biodistribution, tumor targeting, and reduced immunogenicity in mice with a gamma 4 variant of Campath-1H. Proc Natl Acad Sci U S A. 1995;19(92):11980–4.

    Article  Google Scholar 

  65. Smolewski P, Szmigielska-Kaplon A, Cebula B, Jamroziak K, Rogalinska M, Kilianska Z, et al. Proapoptotic activity of alemtuzumab alone and in combination with rituximab or purine nucleoside analogues in chronic lymphocytic leukemia cells. Leuk Lymphoma. 2005;46:87–100. doi:10.1080/13693780400007151.

    Article  CAS  PubMed  Google Scholar 

  66. Elter T, Vehreschild JJ, Gribben J, Cornely OA, Engert A, Hallek M. Management of infections in patients with chronic lymphocytic leukemia treated with alemtuzumab. Ann Hematol. 2009;88:121–32. doi:10.1007/s00277-008-0566-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuki Sugiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sugiyama, K. (2017). Rituximab and Alemtuzumab for Chronic Lymphocytic Leukemia: Basic Results and Pharmacokinetics. In: Ueda, T. (eds) Chemotherapy for Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-10-3332-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3332-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3330-8

  • Online ISBN: 978-981-10-3332-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics