Skip to main content

Runx3 in Immunity, Inflammation and Cancer

  • Chapter
  • First Online:
RUNX Proteins in Development and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 962))

Abstract

In this chapter we summarize the pros and cons of the notion that Runx3 is a major tumor suppressor gene (TSG). Inactivation of TSGs in normal cells provides a viability/growth advantage that contributes cell-autonomously to cancer. More than a decade ago it was suggested that RUNX3 is involved in gastric cancer development, a postulate extended later to other epithelial cancers portraying RUNX3 as a major TSG. However, evidence that Runx3 is not expressed in normal gastric and other epithelia has challenged the RUNX3-TSG paradigm. In contrast, RUNX3 is overexpressed in a significant fraction of tumor cells in various human epithelial cancers and its overexpression in pancreatic cancer cells promotes their migration, anchorage-independent growth and metastatic potential. Moreover, recent high-throughput quantitative genome-wide studies on thousands of human samples of various tumors and new investigations of the role of Runx3 in mouse cancer models have unequivocally demonstrated that RUNX3 is not a bona fide cell-autonomous TSG. Importantly, accumulating data demonstrated that RUNX3 functions in control of immunity and inflammation, thereby indirectly influencing epithelial tumor development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abnet, C. C., Freedman, N. D., Hu, N., Wang, Z., Yu, K., Shu, X. O., et al. (2010). A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nature Genetics, 42, 764–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Achyut, B. R., Bader, D. A., Robles, A. I., Wangsa, D., Harris, C. C., Ried, T., & Yang, L. (2013). Inflammation-mediated genetic and epigenetic alterations drive cancer development in the neighboring epithelium upon stromal abrogation of TGF-beta signaling. PLoS Genetics, 9, e1003251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al Olama, A. A., Kote-Jarai, Z., Schumacher, F. R., Wiklund, F., Berndt, S. I., Benlloch, S., et al. (2013). A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Human Molecular Genetics, 22, 408–415.

    Article  CAS  Google Scholar 

  • Anderson, C. A., Boucher, G., Lees, C. W., Franke, A., D’Amato, M., Taylor, K. D., et al. (2011). Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nature Genetics, 43, 246–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apel, M., Uebe, S., Bowes, J., Giardina, E., Korendowych, E., Juneblad, K., et al. (2013). Variants in RUNX3 contribute to susceptibility to Psoriatic Arthritis, exhibiting further common ground with Ankylosing Spondylitis. Arthritis and Rheumatism, 65, 1224–1231.

    Article  CAS  PubMed  Google Scholar 

  • Aran, D., Sabato, S., & Hellman, A. (2013). DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes. Genome Biology, 14, R21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asfaha, S., Hayakawa, Y., Muley, A., Stokes, S., Graham, T. A., Ericksen, R. E., et al. (2015). Krt19(+)/Lgr5(-) cells are radioresistant cancer-initiating stem cells in the colon and intestine. Cell Stem Cell, 16, 627–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avraham, K. B., Levanon, D., Negreanu, V., Bernstein, Y., Groner, Y., Copeland, N. G., & Jenkins, N. A. (1995). Mapping of the mouse homolog of the human runt domain gene, AML2, to the distal region of mouse chromosome 4. Genomics, 25, 603–605.

    Article  CAS  PubMed  Google Scholar 

  • Bagchi, A., & Mills, A. A. (2008). The quest for the 1p36 tumor suppressor. Cancer Research, 68, 2551–2556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagchi, A., Papazoglu, C., Wu, Y., Capurso, D., Brodt, M., Francis, D., et al. (2007). CHD5 is a tumor suppressor at human 1p36. Cell, 128, 459–475.

    Article  CAS  PubMed  Google Scholar 

  • Banerji, S., Cibulskis, K., Rangel-Escareno, C., Brown, K. K., Carter, S. L., Frederick, A. M., et al. (2012). Sequence analysis of mutations and translocations across breast cancer subtypes. Nature, 486, 405–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer, O., Hantisteanu, S., Lotem, J., & Groner, Y. (2014). Carcinogen-induced skin tumor development requires leukocytic expression of the transcription factor Runx3. Cancer Prevention Research, 7, 913–926.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, O., Sharir, A., Kimura, A., Hantisteanu, S., Takeda, S., & Groner, Y. (2015). Loss of osteoblast Runx3 produces severe congenital osteopenia. Molecular and Cellular Biology, 35, 1097–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beerman, I., Bock, C., Garrison, B. S., Smith, Z. D., Gu, H., Meissner, A., & Rossi, D. J. (2013). Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell, 12, 413–425.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ami, O., Friedman, D., Leshkowitz, D., Goldenberg, D., Orlovsky, K., Pencovich, N., et al. (2013). Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1. Cell Reports, 4, 1131–1143.

    Article  CAS  PubMed  Google Scholar 

  • Berger, A. H., Knudson, A. G., & Pandolfi, P. P. (2011). A continuum model for tumour suppression. Nature, 476, 163–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beroukhim, R., Mermel, C. H., Porter, D., Wei, G., Raychaudhuri, S., Donovan, J., et al. (2010). The landscape of somatic copy-number alteration across human cancers. Nature, 463, 899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhowmick, N. A., Neilson, E. G., & Moses, H.L. (2004). Stromal fibroblasts in cancer initiation and progression. Nature, 432, 332–337.

    Google Scholar 

  • Birnbaum, D. J., Adelaide, J., Mamessier, E., Finetti, P., Lagarde, A., Monges, G., et al. (2011). Genome profiling of pancreatic adenocarcinoma. Genes, Chromosomes & Cancer, 50, 456–465.

    Article  CAS  Google Scholar 

  • Blyth, K., Slater, N., Hanlon, L., Bell, M., Mackay, N., Stewart, M., et al. (2009). Runx1 promotes B-cell survival and lymphoma development. Blood Cells, Molecules & Diseases, 43, 12–19.

    Article  CAS  Google Scholar 

  • Brady, G., Whiteman, H. J., Spender, L. C., & Farrell, P. J. (2009). Downregulation of RUNX1 by RUNX3 requires the RUNX3 VWRPY sequence and is essential for Epstein-Barr virus-driven B-cell proliferation. Journal of Virology, 83, 6909–6916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner, O., Levanon, D., Negreanu, V., Golubkov, O., Fainaru, O., Woolf, E., & Groner, Y. (2004). Loss of Runx3 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia. Proceedings of the National Academy of Sciences of the United States of America, 101, 16016–16021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browne, G., Taipaleenmaki, H., Bishop, N. M., Madasu, S. C., Shaw, L. M., van Wijnen, A. J., et al. (2015). Runx1 is associated with breast cancer progression in MMTV-PyMT transgenic mice and its depletion in vitro inhibits migration and invasion. Journal of Cellular Physiology, 230, 2522–2532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho, R., Milne, A. N., Polak, M., Corver, W. E., Offerhaus, G. J., & Weterman, M. A. (2005). Exclusion of RUNX3 as a tumour-suppressor gene in early-onset gastric carcinomas. Oncogene, 24, 8252–8258.

    Article  CAS  PubMed  Google Scholar 

  • Chan, I. T., Kutok, J. L., Williams, I. R., Cohen, S., Kelly, L., Shigematsu, H., et al. (2004). Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. The Journal of Clinical Investigation, 113(4), 528–538.

    Google Scholar 

  • Cheroutre, H., Lambolez, F., & Mucida, D. (2011). The light and dark sides of intestinal intraepithelial lymphocytes. Nature Reviews. Immunology, 11, 445–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Childs, E. J., Mocci, E., Campa, D., Bracci, P. M., Gallinger, S., Goggins, M., et al. (2015). Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nature Genetics, 47, 911–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, H., Sheng, J., Gao, D., Li, F., Durrans, A., Ryu, S., et al. (2015). Transcriptome analysis of individual stromal cell populations identifies stroma-tumor crosstalk in mouse lung cancer model. Cell Reports, 10, 1187–1201.

    Article  CAS  PubMed  Google Scholar 

  • Chun, N., & Ford, J. M. (2012). Genetic testing by cancer site: Stomach. Cancer Journal, 18, 355–363.

    Article  CAS  Google Scholar 

  • Cortes, A., Hadler, J., Pointon, J. P., Robinson, P. C., Karaderi, T., Leo, P., et al. (2013). Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nature Genetics, 45, 730–738.

    Google Scholar 

  • Cortez-Retamozo, V., Etzrodt, M., Newton, A., Rauch, P. J., Chudnovskiy, A., Berger, C., et al. (2012). Origins of tumor-associated macrophages and neutrophils. Proceedings of the National Academy of Sciences of the United States of America, 109, 2491–2496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz-Guilloty, F., Pipkin, M. E., Djuretic, I. M., Levanon, D., Lotem, J., Lichtenheld, M. G., et al. (2009). Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. The Journal of Experimental Medicine, 206, 51–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dedeurwaerder, S., Desmedt, C., Calonne, E., Singhal, S. K., Haibe-Kains, B., Defrance, M., et al. (2011). DNA methylation profiling reveals a predominant immune component in breast cancers. EMBO Molecular Medicine, 3, 726–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, L., Zhou, J. F., Sellers, R. S., Li, J. F., Nguyen, A. V., Wang, Y., et al. (2010). A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. The American Journal of Pathology, 176, 952–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, N., Goh, L. K., Wang, H., Das, K., Tao, J., Tan, I. B., et al. (2012). A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut, 61, 673–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dicken, J., Mildner, A., Leshkowitz, D., Touw, I. V., Hantisteanu, S., Jung, S., & Groner, Y. (2013). Transcriptional reprogramming of CD11b+Esamhi dendritic cell identity and function by loss of Runx3. PloS One, 8, e77490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djuretic, I. M., Levanon, D., Negreanu, V., Groner, Y., Rao, A., & Ansel, K. M. (2007). Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nature Immunology, 8, 145–153.

    Article  CAS  PubMed  Google Scholar 

  • Doll, A., Gonzalez, M., Abal, M., Llaurado, M., Rigau, M., Colas, E., et al. (2009). An orthotopic endometrial cancer mouse model demonstrates a role for RUNX1 in distant metastasis. International Journal of Cancer, 125, 257–263.

    Article  CAS  PubMed  Google Scholar 

  • Dubois, P. C., Trynka, G., Franke, L., Hunt, K. A., Romanos, J., Curtotti, A., et al. (2010). Multiple common variants for celiac disease influencing immune gene expression. Nature Genetics, 42, 295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dulak, A. M., Stojanov, P., Peng, S., Lawrence, M. S., Fox, C., Stewart, C., et al. (2013). Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nature Genetics, 45, 478–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duran, A., Amanchy, R., Linares, J. F., Joshi, J., Abu-Baker, S., Porollo, A., et al. (2011). p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Molecular Cell, 44, 134–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duran, A., Hernandez, E. D., Reina-Campos, M., Castilla, E. A., Subramaniam, S., Raghunandan, S., et al. (2016). Cancer Cell, 30, 595–609.

    Google Scholar 

  • Easton, D. F., Pooley, K. A., Dunning, A. M., Pharoah, P. D., Thompson, D., Ballinger, D. G., et al. (2007). Genome-wide association study identifies novel breast cancer susceptibility loci. Nature, 447, 1087–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebihara, T., Song, C., Ryu, S. H., Plougastel-Douglas, B., Yang, L., Levanon, D., et al. (2015). Runx3 specifies lineage commitment of innate lymphoid cells. Nature Immunology, 16, 1124–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eeles, R. A., Olama, A. A., Benlloch, S., Saunders, E. J., Leongamornlert, D. A., Tymrakiewicz, M., et al. (2013). Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nature Genetics, 45, 385–391.

    Article  CAS  PubMed  Google Scholar 

  • Elinav, E., Nowarski, R., Thaiss, C. A., Hu, B., Jin, C., & Flavell, R. A. (2013). Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nature Reviews. Cancer, 13, 759–771.

    Article  CAS  PubMed  Google Scholar 

  • Emma, M. R., Iovanna, J. L., Bachvarov, D., Puleio, R., Loria, G. R., Augello, G., et al. (2016). NUPR1, a new target in liver cancer: Implication in controlling cell growth, migration, invasion and sorafenib resistance. Cell Death & Disease, 7, e2269.

    Article  CAS  Google Scholar 

  • Esparza-Gordillo, J., Schaarschmidt, H., Liang, L., Cookson, W., Bauerfeind, A., Lee-Kirsch, M. A., et al. (2013). A functional IL-6 receptor (IL6R) variant is a risk factor for persistent atopic dermatitis. The Journal of Allergy and Clinical Immunology, 132, 371–377.

    Article  CAS  PubMed  Google Scholar 

  • Evans, D. M., Spencer, C. C., Pointon, J. J., Su, Z., Harvey, D., Kochan, G., et al. (2011). Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nature Genetics, 43, 761–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fainaru, O., Woolf, E., Lotem, J., Yarmus, M., Brenner, O., Goldenberg, D., et al. (2004). Runx3 regulates mouse TGF-beta-mediated dendritic cell function and its absence results in airway inflammation. The EMBO Journal, 23, 969–979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, B., Dachrut, S., Coral, H., Yuen, S. T., Chu, K. M., Law, S., et al. (2012). Integration of DNA copy number alterations and transcriptional expression analysis in human gastric cancer. PloS One, 7, e29824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fanale, D., Amodeo, V., Corsini, L. R., Rizzo, S., Bazan, V., & Russo, A. (2012). Breast cancer genome-wide association studies: There is strength in numbers. Oncogene, 31, 2121–2128.

    Article  CAS  PubMed  Google Scholar 

  • Ferrari, N., McDonald, L., Morris, J. S., Cameron, E. R., & Blyth, K. (2013). RUNX2 in mammary gland development and breast cancer. Journal of Cellular Physiology, 228, 1137–1142.

    Article  CAS  PubMed  Google Scholar 

  • Fijneman, R. J., Anderson, R. A., Richards, E., Liu, J., Tijssen, M., Meijer, G. A., et al. (2012). Runx1 is a tumor suppressor gene in the mouse gastrointestinal tract. Cancer Science, 103, 593–599.

    Article  CAS  PubMed  Google Scholar 

  • Franke, A., McGovern, D. P., Barrett, J. C., Wang, K., Radford-Smith, G. L., Ahmad, T., et al. (2010). Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nature Genetics, 42, 1118–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrich, M. J., Rad, R., Langer, R., Voland, P., Hoefler, H., Schmid, R. M., et al. (2006). Lack of RUNX3 regulation in human gastric cancer. The Journal of Pathology, 210, 141–146.

    Article  CAS  PubMed  Google Scholar 

  • Fritz, J. M., Dwyer-Nield, L. D., & Malkinson, A. M. (2011). Stimulation of neoplastic mouse lung cell proliferation by alveolar macrophage-derived, insulin-like growth factor-1 can be blocked by inhibiting MEK and PI3K activation. Molecular Cancer, 10, 76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gal-Yam, E. N., Egger, G., Iniguez, L., Holster, H., Einarsson, S., Zhang, X., et al. (2008). Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proceedings of the National Academy of Sciences of the United States of America, 105, 12979–12984.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gebhardt, C., Riehl, A., Durchdewald, M., Nemeth, J., Furstenberger, G., Muller-Decker, K., et al. (2008). RAGE signaling sustains inflammation and promotes tumor development. The Journal of Experimental Medicine, 205, 275–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghoussaini, M., Fletcher, O., Michailidou, K., Turnbull, C., Schmidt, M. K., Dicks, E., et al. (2012). Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nature Genetics, 44, 312–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grim, J. E., Knoblaugh, S. E., Guthrie, K. A., Hagar, A., Swanger, J., Hespelt, J., et al. (2012). Fbw7 and p53 cooperatively suppress advanced and chromosomally unstable intestinal cancer. Molecular and Cellular Biology, 32, 2160–2167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerra, C., Schuhmacher, A. J., Canamero, M., Grippo, P. J., Verdaguer, L., Perez-Gallego, L., et al. (2007). Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell, 11, 291–302.

    Article  CAS  PubMed  Google Scholar 

  • Guo, C., Yao, F., Wu, K., Yang, L., Zhang, X., & Ding, J. (2010). Chromatin immunoprecipitation and association study revealed a possible role of Runt-related transcription factor 3 in the ulcerative colitis of Chinese population. Clinical Immunology, 135, 483–489.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Z., Yang, L., Qian, F., Wang, Y., Yu, X., Ji, C.-D., et al. (2016). Transcription factor RUNX2 up-regulates chemokine receptor CXCR4 to promote invasive and metastatic potentials of human gastric cancer. Oncotarget, 7, 20999–21012.

    PubMed  PubMed Central  Google Scholar 

  • Guri-BenAri, M., Thais, C. A., Serafini, N., Winter, D. R., Giladi, A., Lara-Astiaso, D., et al. (2016). The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell, 166, 1231–1246.

    Article  CAS  Google Scholar 

  • Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144, 646–674.

    Article  CAS  PubMed  Google Scholar 

  • He, X., Xiang, C., Zhang, C., Xie, Y., Chen, L., Zhang, G., & Liu, G. (2015). p53 in the myeloid lineage modulates an inflammatory microenvironment limiting initiation and invasion of intestinal tumors. Cell Reports, 13, 888–897.

    Article  CAS  PubMed  Google Scholar 

  • Helms, C., Cao, L., Krueger, J. G., Wijsman, E. M., Chamian, F., Gordon, D., et al. (2003). A putative RUNX1 binding site variant between SLC9A3R1 and NAT9 is associated with susceptibility to psoriasis. Nature Genetics, 35, 349–356.

    Google Scholar 

  • Himmelstein, D. S., & Baranzini, S. E. (2015). Heterogeneous network edge prediction: A data integration approach to prioritize disease-associated genes. PLoS Computational Biology, 11, e1004259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hishida, A., Matsuo, K., Goto, Y., Mitsuda, Y., Naito, M., Wakai, K., et al. (2009). Significant association of RUNX3 T/A polymorphism at intron 3 (rs760805) with the risk of gastric atrophy in Helicobacter pylori seropositive Japanese. Journal of Gastroenterology, 44, 1165–1171.

    Article  CAS  PubMed  Google Scholar 

  • Houghton, A. M. (2013). Mechanistic links between COPD and lung cancer. Nature Reviews. Cancer, 13, 233–245.

    Article  CAS  PubMed  Google Scholar 

  • Hu, S. L., Huang, D. B., Sun, Y. B., Wu, L., Xu, W. P., Yin, S., et al. (2011). Pathobiologic implications of methylation and expression status of Runx3 and CHFR genes in gastric cancer. Medical Oncology, 28, 447–454.

    Article  CAS  PubMed  Google Scholar 

  • Huang, B., Qu, Z., Ong, C. W., Tsang, Y. H. N., Xiao, G., Shapiro, D., et al. (2012). RUNX3 acts as a tumor suppressor in breast cancer by targeting estrogen receptor alpha. Oncogene, 31, 527–534.

    Article  CAS  PubMed  Google Scholar 

  • Ito, K., Lim, A. C., Salto-Tellez, M., Motoda, L., Osato, M., Chuang, L. S., et al. (2008). RUNX3 attenuates beta-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell, 14, 226–237.

    Article  CAS  PubMed  Google Scholar 

  • Ito, K., Chuang, L. S., Ito, T., Chang, T. L., Fukamachi, H., Salto-Tellez, M., & Ito, Y. (2011). Loss of Runx3 is a key event in inducing precancerous state of the stomach. Gastroenterology, 140, 1536–1546.

    Google Scholar 

  • Jasperson, J. W., Tuohy, T. M., Neklason, D. W., & Burt, R. W. (2011). Hereditary and familial colon cancer. Gastroenterology, 138, 2044–2058.

    Article  CAS  Google Scholar 

  • Ji, H., Houghton, A. M., Mariani, T. J., Perera, S., Kim, C. B., Padera, R., et al. (2006). K-ras activation generates an inflammatory response in lung tumors. Oncogene, 25, 2105–2112.

    Article  CAS  PubMed  Google Scholar 

  • Jones, S., Wang, T. L., Shih Ie-M., Mao, T. L., Nakayama, K., Roden, R., et al. (2010). Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science, 330, 228–231.

    Google Scholar 

  • Jostins, L., Ripke, S., Weersma, R. K., Duerr, R. H., McGovern, D. P., Hui, K. Y., et al. (2012). Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 491, 119–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., et al. (2013). Mutational landscape and significance across 12 major cancer types. Nature, 502, 333–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katajisto, P., Vaahtomeri, K., Ekman, N., Ventela, E., Ristimaki, A., Bardeesy, N., et al. (2008). LKB1 signaling in mesenchymal cells required for suppression of gastrointestinal polyposis. Nature Genetics, 40, 455–459.

    Article  CAS  PubMed  Google Scholar 

  • Keita, M., Bachvarova, M., Morin, C., Plante, M., Gregoire, J., Renaud, M. C., et al. (2013). The RUNX1 transcription factor is expressed in serous epithelial ovarian carcinoma and contributes to cell proliferation, migration and invasion. Cell Cycle, 12, 972–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller, G., Vogelsang, H., Becker, I., Plaschke, S., Ott, K., Suriano, G., et al. (2004). Germline mutations of the E-cadherin(CDH1) and TP53 genes, rather than of RUNX3 and HPP1, contribute to genetic predisposition in German gastric cancer patients. Journal of Medical Genetics, 41, e89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keshet, I., Schlesinger, Y., Farkash, S., Rand, E., Hecht, M., Segal, E., et al. (2006). Evidence for an instructive mechanism of de novo methylation in cancer cells. Nature Genetics, 38, 149–153.

    Article  CAS  PubMed  Google Scholar 

  • Kibriya, M. G., Raza, M., Jasmine, F., Roy, S., Paul-Brutus, R., Rahaman, R., et al. (2011). A genome-wide DNA methylation study in colorectal carcinoma. BMC Medical Genomics, 4, 50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, W. J., Kim, E. J., Jeong, P., Quan, C., Kim, J., Li, Q. L., et al. (2005). RUNX3 inactivation by point mutations and aberrant DNA methylation in bladder tumors. Cancer Research, 65, 9347–9354.

    Article  CAS  PubMed  Google Scholar 

  • Kim, B. G., Li, C., Qiao, W., Mamura, M., Kasprzak, B., Anver, M., et al. (2006). Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature, 441, 1015–1019.

    Article  CAS  PubMed  Google Scholar 

  • Kim, T. H., Li, F., Ferreiro-Neira, I., Ho, L. L., Luyten, A., Nalapareddy, K., et al. (2014). Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity. Nature, 506, 511–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klutstein, M., Nerjman, D., Greenfield, R., & Cedar, H. (2016). DNA methylation in cancer and aging. Cancer Research, 76, 3446–3450.

    Article  CAS  PubMed  Google Scholar 

  • Kudo, Y., Tsunematsu, T., & Takata, T. (2011). Oncogenic role of RUNX3 in head and neck cancer. Journal of Cellular Biochemistry, 112, 387–393.

    Article  CAS  PubMed  Google Scholar 

  • Kurklu, B., Whitehead, R. H., Ong, E. K., Minamoto, T., Fox, J. G., Mann, J. R., et al. (2015). Lineage-specific RUNX3 hypomethylation marks the preneoplastic immune component of gastric cancer. Oncogene, 34, 2856–2866.

    Article  CAS  PubMed  Google Scholar 

  • Lan, Q., Hsiung, C. A., Matsuo, K., Hong, Y. C., Seow, A., Wang, Z. M., et al. (2012). Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nature Genetics, 44, 1330–1335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landan, G., Cohen, N. M., Mukamel, Z., Bar, A., Molchadsky, A., Brosh, R., et al. (2012). Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nature Genetics, 44, 1207–1214.

    Article  CAS  PubMed  Google Scholar 

  • Landi, M. T., Chatterjee, N., Yu, K., Goldin, L. R., Goldstein, A. M., Rotunno, M., et al. (2009). A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for Adenocarcinoma. American Journal of Human Genetics, 85, 679–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laprise, C. (2014). The Saguenay-Lac-Saint-Jean asthma familial collection: The genetics of asthma in a young founder population. Genes and Immunity, 15, 247–255.

    Article  CAS  PubMed  Google Scholar 

  • Lauber, S. (2012) The role of gp130 cytokines IL-6 and OSM on tumor development in mouse models for lung adenocarcinoma. Open AcessDissertations and Theses 7325: M.Sc., McMaster University, Hamilton, Ontario.

    Google Scholar 

  • Lawrence, M. S., Stojanov, P., Mermel, C. H., Robinson, J. T., Garraway, L. A., Golub, T. R., et al. (2014). Discovery and saturation analysis of cancer genes across 21 tumour types. Nature, 505, 495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, K. S., Lee, Y. S., Lee, J. M., Ito, K., Cinghu, S., Kim, J. H., et al. (2010). Runx3 is required for the differentiation of lung epithelial cells and suppression of lung cancer. Oncogene, 29, 3349–3361.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C. W., Chuang, L. S., Kimura, S., Lai, S. K., Ong, C. W., Yan, B., et al. (2011). RUNX3 functions as an oncogene in ovarian cancer. Gynecologic Oncology, 122, 410–417.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y. S., Lee, J. W., Jang, J. W., Chi, X. Z., Kim, J. H., Li, Y. H., et al. (2013). Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell, 24, 603–616.

    Article  PubMed  CAS  Google Scholar 

  • Leung, W. K., Wu, K. C., Wong, C. Y., Cheng, A. S., Ching, A. K., Chan, A. W., et al. (2008). Transgenic cyclooxygenase-2 expression and high salt enhanced susceptibility to chemical-induced gastric cancer development in mice. Carcinogenesis, 29, 1648–1654.

    Article  CAS  PubMed  Google Scholar 

  • Levanon, D., & Groner, Y. (2004). Structure and regulated expression of mammalian RUNX genes. Oncogene, 23, 4211–4219.

    Article  CAS  PubMed  Google Scholar 

  • Levanon, D., & Groner, Y. (2009). Runx3-deficient mouse strains circa 2008: Resemblance and dissimilarity. Blood Cells, Molecules & Diseases, 43, 1–5.

    Article  CAS  Google Scholar 

  • Levanon, D., Negreanu, V., Bernstein, Y., Bar-Am, I., Avivi, L., & Groner, Y. (1994). AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. Genomics, 23, 425–432.

    Article  CAS  PubMed  Google Scholar 

  • Levanon, D., Brenner, O., Negreanu, V., Bettoun, D., Woolf, E., Eilam, R., et al. (2001). Spatial and temporal expression pattern of Runx3 (Aml2) and Runx1 (Aml1) indicates non-redundant functions during mouse embryogenesis. Mechanisms of Development, 109, 413–417.

    Article  CAS  PubMed  Google Scholar 

  • Levanon, D., Bettoun, D., Harris-Cerruti, C., Woolf, E., Negreanu, V., Eilam, R., et al. (2002). The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. The EMBO Journal, 21, 3454–3463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levanon, D., Hantisteanu, S., Negreanu, V., Brenner, O., & Groner, Y. (2009). New insights into the mechanism of inflammatory bowel disease (IBD) etiology in Runx3-deficient mice. EMBO Worksop, RUNX Transcription Factors in Development & Disease 20.

    Google Scholar 

  • Levanon, D., Bernstein, Y., Negreanu, V., Bone, K. R., Pozner, A., Eilam, R., et al. (2011). Absence of Runx3 expression in normal gastrointestinal epithelium calls into question its tumour suppressor function. EMBO Molecular Medicine, 3, 593–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levanon, D., Negreanu, V., Lotem, J., Rae-Bone, K., Brenner, O., Leshkowitz, D., & Groner, Y. (2014). Runx3 regulates interleukin-15 dependent natural killer cell activation. Molecular and Cellular Biology, 34, 1158–1169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, Q. L., Ito, K., Sakakura, C., Fukamachi, H., Inoue, K., Chi, X. Z., et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell, 109, 113–124.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Kleeff, J., Guweidhi, A., Esposito, I., Berberat, P. O., Giese, T., et al. (2004). RUNX3 expression in primary and metastatic pancreatic cancer. Journal of Clinical Pathology, 57, 294–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Q., Jia, Z., Wang, L., Kong, X., Li, Q., Guo, K., et al. (2012a). Disruption of Klf4 in villin-positive gastric progenitor cells promotes formation and progression of tumors of the antrum in mice. Gastroenterology, 142, 531–542.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Xu, S., Lin, S., & Zhao, W. (2012b). Overexpression of runt-related transcription factor-2 is associated with advanced tumor progression and poor prognosis in epithelial ovarian cancer. Journal of Biomedicine & Biotechnology, 2012, 456534.

    Google Scholar 

  • Li, X., Lu, J., Tan, C., Wang, Q., & Feng, Y. (2016). RUNX2 promotes breast cancer bone metastasis by increasing integrin a5-mediated colonization. Cancer Letters, 380, 78–86.

    Article  CAS  PubMed  Google Scholar 

  • Liang, H., Cheung, L. W., Li, J., Ju, Z., Yu, S., Stemke-Hale, K., et al. (2012). Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Genome Research, 22, 2120–2129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, C., Song, H., Huang, C., Yao, E., Gacayan, R., Xu, S. M., & Chuang, P. T. (2012). Alveolar type II cells possess the capability of initiating lung tumor development. PloS One, 7, e53817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J. Z., van Sommeren, S., Huang, H., Ng, S. C., Alberts, R., Takahashi, A., et al. (2015). Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nature Genetics, 47, 979–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorca-Cardenosa, M.J., Fleitas, T., Ibarrola-Villava, M., Pena-Chilet, M., Mongort, C., Martinez-Ciarpaglini, C., et al. (2016). Epigenetic changes in localized gastric cancer: The role of RUNX3 in tumor progression and the immune microenvironment. Oncotarget . doi:10.18632/Oncotarget, in press

    Google Scholar 

  • Lotem, J., Levanon, D., Negreanu, V., & Groner, Y. (2013a). The false paradigm of Runx3 function as tumor suppressor in gastric cancer. Journal of Cancer Therapy, 4, 16–25.

    Article  CAS  Google Scholar 

  • Lotem, J., Levanon, D., Negreanu, V., Leshkowitz, D., Friedlander, G., & Groner, Y. (2013b). Runx3-mediated transcriptional program in cytotoxic lymphocytes. PLOS One, 8, e80467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lotem, J., Levanon, D., Negreanu, V., Bauer, O., Hantisteanu, S., Dicken, Y., & Groner, Y. (2015). Runx3 at the interface of immunity, inflammation and cancer. Biochimica et Biophysica Acta, 1855, 131–143.

    CAS  PubMed  Google Scholar 

  • Lujambio, A., Akkari, L., Simon, J., Grace, D., Tschaharganeh, D. F., Bolden, J. E., et al. (2013). Non-cell-autonomous tumor suppression by p53. Cell, 153, 449–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald, L., Ferrari, N., Terry, A., Bell, M., Mohammed, Z. M., Orange, C., et al. (2014). RUNX2 in subtype specific breast cancer and mammary gland differentiation. Disease Models & Mechanisms, 7, 525–534.

    Article  CAS  Google Scholar 

  • McLeod, A. G., Sherrill, T. P., Cheng, D., Han, W., Saxon, J. A., Gleaves, L. A., et al. (2016). Neutrophil-derived IL-1β impairs the efficacy of NF-κB inhibitors against lung cancer. Cell Reports, 16, 120–132.

    Article  CAS  Google Scholar 

  • Melchor, L., & Benitez, J. (2013). The complex genetic landscape of familial breast cancer. Human Genetics, 132, 845–863.

    Article  CAS  PubMed  Google Scholar 

  • Munoz, J., Stange, D. E., Schepers, A. G., van de Wetering, M., Koo, B. K., Itzkovitz, S., et al. (2012). The Lgr5 intestinal stem cell signature: Robust expression of proposed quiescent '+4' cell markers. The EMBO Journal, 31, 3079–3091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Na, Y. J., Shim, K. N., Joo, Y. H., Kim, S. E., Jung, H. K., Jung, S. A., & Cho, M. S. (2015). RUNX3 methylation, loss of RUNX3 expression and clinicopathologic findings according to Helicobacter pylori CagA in gastric carcinoma. The Korean Journal of Gastroenterology, 66, 75–84.

    Article  PubMed  Google Scholar 

  • Nagini, S. (2012). Carcinoma of the stomach: A review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World Journal of Gastrointestinal Oncology, 4, 156–169.

    Article  PubMed  PubMed Central  Google Scholar 

  • Naumov, V. A., Generozov, E. V., Zaharjevskaya, N. B., Matushkina, D. S., Larin, A. K., Chernyshov, S. V., et al. (2013). Genome-scale analysis of DNA methylation in colorectal cancer using Infinium HumanMethylation450 BeadChips. Epigenetics, 8, 921–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oguma, K., Oshima, H., Aoki, M., Uchio, R., Naka, K., Nakamura, S., et al. (2008). Activated macrophages promote Wnt signalling through tumour necrosis factor-alpha in gastric tumour cells. The EMBO Journal, 27, 1671–1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oshima, H., Ishikawa, T., Yoshida, G. J., Naoi, K., Maeda, Y., Naka, K., et al. (2014). TNF-alpha/TNFR1 signaling promotes gastric tumorigenesis through induction of Noxo1 and Gna14 in tumor cells. Oncogene, 33, 3820–3829.

    Article  CAS  PubMed  Google Scholar 

  • Park, J. H., Park, J., Choi, J. K., Lyu, J., Bae, M. G., Lee, Y. G., et al. (2011). Identification of DNA methylation changes associated with human gastric cancer. BMC Medical Genomics, 4, 82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters, U., Hutter, C. M., Hsu, L., Schumacher, F. R., Conti, D. V., Carlson, C. S., et al. (2012). Meta-analysis of new genome-wide association studies of colorectal cancer risk. Human Genetics, 131, 217–234.

    Article  PubMed  Google Scholar 

  • Petersen, G. M., Amundadottir, L., Fuchs, C. S., Kraft, P., Stolzenberg-Solomon, R. Z., Jacobs, K. B., et al. (2010). A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nature Genetics, 42, 224–228.

    Google Scholar 

  • Pharoah, P. D., Tsai, Y. Y., Ramus, S. J., Phelan, C. M., Goode, E. L., Lawrenson, K., et al. (2013). GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nature Genetics, 45, 362–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratap, J., Lian, J. B., & Stein, G. S. (2011). Metastatic bone disease: Role of transcription factors and future targets. Bone, 48, 30–36.

    Article  CAS  PubMed  Google Scholar 

  • Prokunina, L., Castillejo-Lopez, C., Oberg, F., Gunnarsson, I., Berg, L., Magnusson, V., et al. (2002). A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nature Genetics, 32, 666–669.

    Article  CAS  PubMed  Google Scholar 

  • Raveh, E., Cohen, S., Levanon, D., Groner, Y., & Gat, U. (2005). Runx3 is involved in hair shape determination. Developmental Dynamics, 233, 1478–1487.

    Article  CAS  PubMed  Google Scholar 

  • Reis, B. S., Rogoz, A., Costa-Pinto, F. A., Taniuchi, I., & Mucida, D. (2013). Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4(+) T cell immunity. Nature Immunology, 14, 271–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis, B. S., Hoytema van Konijnenburg, D. P., Grivennikov, S. I., & Mucida, D. (2014). Transcription factor T-bet regulates intraepithelial lymphocyte functional maturation. Immunity, 41, 244–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rundhaug, J. E., & Fischer, S. M. (2010). Molecular mechanisms of mouse skin tumor promotion. Cancers (Basel), 2, 436–482.

    Article  CAS  Google Scholar 

  • Sakamoto, H., Yoshimura, K., Saeki, N., Katai, H., Shimoda, T., Matsuno, Y., et al. (2008). Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer. Nature Genetics, 40, 730–740.

    Article  CAS  PubMed  Google Scholar 

  • Salto-Tellez, M., Peh, B. K., Ito, K., Tan, S. H., Chong, P. Y., Han, H. C., et al. (2006). RUNX3 protein is overexpressed in human basal cell carcinomas. Oncogene, 25, 7646–7649.

    Article  CAS  PubMed  Google Scholar 

  • Sapkota, Y., Yasui, Y., Lai, R., Sridharan, M., Robson, P. J., Cass, C. E., et al. (2013). Identification of a breast cancer susceptibility locus at 4q31.22 using a genome-wide association study paradigm. PloS One, 8, e62550.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheitz, C. J., Lee, T. S., McDermitt, D. J., & Tumbar, T. (2012). Defining a tissue stem cell-driven Runx1/Stat3 signalling axis in epithelial cancer. The EMBO Journal, 31, 4124–4139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shain, A. H., Giacomini, C. P., Matsukuma, K., Karikari, C. A., Bashyam, M. D., Hidalgo, M., et al. (2012). Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 109, E252–E259.

    Article  CAS  PubMed  Google Scholar 

  • Shi, Y., Hu, Z., Wu, C., Dai, J., Li, H., Dong, J., et al. (2011). A genome-wide association study identifies new susceptibility loci for non-cardia gastric cancer at 3q13.31 and 5p13.1. Nature Genetics, 43, 1215–1218.

    Article  CAS  PubMed  Google Scholar 

  • Shi, Y., Li, L., Hu, Z., Li, S., Wang, S., Liu, J., et al. (2013). A genome-wide association study identifies two new cervical cancer susceptibility loci at 4q12 and 17q12. Nature Genetics, 45, 918–922.

    Article  CAS  PubMed  Google Scholar 

  • Song, H. J., Shim, K. N., Joo, Y. H., Kim, S. E., Jung, S. A., & Yoo, K. (2008). Methylation of the tumor suppressor gene RUNX3 in human gastric carcinoma. Gut Liver, 2, 119–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stange, D. E., Koo, B. K., Huch, M., Sibbel, G., Basak, O., Lyubimova, A., et al. (2013). Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell, 155, 357–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens, P. J., Tarpey, P. S., Davies, H., Van Loo, P., Greenman, C., Wedge, D. C., et al. (2012). The landscape of cancer genes and mutational processes in breast cancer. Nature, 486, 400–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subramaniam, M. M., Chan, J. Y., Yeoh, K. G., Quek, T., Ito, K., & Salto-Tellez, M. (2009). Molecular pathology of RUNX3 in human carcinogenesis. Biochimica et Biophysica Acta, 1796, 315–331.

    CAS  PubMed  Google Scholar 

  • Sugai, M., Aoki, K., Osato, M., Nambu, Y., Ito, K., Taketo, M. M., & Shimizu, A. (2011). Runx3 is required for full activation of regulatory T cells to prevent colitis-associated tumor formation. Journal of Immunology, 186, 6515–6520.

    Article  CAS  Google Scholar 

  • Takahashi, H., Ogata, H., Nishigaki, R., Broide, D. H., & Karin, M. (2010). Tobacco smoke promotes lung tumorigenesis by triggering IKKbeta- and JNK1-dependent inflammation. Cancer Cell, 17, 89–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura, G., So, K., Miyoshi, H., Honda, T., Nishizuka, S., & Motoyama, T. (2009). Quantitative assessment of gene methylation in neoplastic and non-neoplastic gastric epithelia using methylation-specific DNA microarray. Pathology International, 59, 895–899.

    Article  CAS  PubMed  Google Scholar 

  • Taniuchi, I., Osato, M., Egawa, T., Sunshine, M. J., Bae, S. C., Komori, T., et al. (2002). Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell, 111, 621–633.

    Article  CAS  PubMed  Google Scholar 

  • Taniuchi, I., Osato, M., & Ito, Y. (2012). Runx1: No longer just for leukemia. The EMBO Journal, 31, 4098–4099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • TCGAR network. (2014). Comprehensive molecular characterization of gastric adenocarcinoma. Nature, 513, 202–209.

    Article  CAS  Google Scholar 

  • Tenesa, A., & Dunlop, M. G. (2009). New insights into the aetiology of colorectal cancer from genome-wide association studies. Nature Reviews. Genetics, 10, 353–358.

    Article  CAS  PubMed  Google Scholar 

  • Tokuhiro, S., Yamada, R., Chang, X., Suzuki, A., Kochi, Y., Sawada, T., et al. (2003). An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nature Genetics, 35, 341–348.

    Article  CAS  PubMed  Google Scholar 

  • Treutlein, B., Brownfield, D. G., Wu, A. R., Neff, N. F., Mantalas, G. L., Espinoza, F. H., et al. (2014). Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature, 509, 371–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trimboli, A. J., Cantemir-Stone, C. Z., Li, F., Wallace, J. A., Merchant, A., Creasap, N., et al. (2009). Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature, 461, 1084–1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trynka, G., Wijmenga, C., & van Heel, D. A. (2010). A genetic perspective on coeliac disease. Trends in Molecular Medicine, 16, 537–550.

    Article  CAS  PubMed  Google Scholar 

  • Tsoi, L. C., Spain, S. L., Knight, J., Ellinghaus, E., Stuart, P. E., Capon, F., et al. (2012). Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nature Genetics, 44, 1341–1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukamoto, Y., Uchida, T., Karnan, S., Noguchi, T., Nguyen, L. T., Tanigawa, M., et al. (2008). Genome-wide analysis of DNA copy number alterations and gene expression in gastric cancer. The Journal of Pathology, 216, 471–482.

    Article  CAS  PubMed  Google Scholar 

  • Turnbull, C., Ahmed, S., Morrison, J., Pernet, D., Renwick, A., Maranian, M., et al. (2010). Genome-wide association study identifies five new breast cancer susceptibility loci. Nature Genetics, 42, 504–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valencia, T., Kim, J. Y., Abu-Baker, S., Moscat-Pardos, J., Ahn, C. S., Reina-Campos, M., et al. (2014). Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis. Cancer Cell, 26, 121–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Bragt, M. P., Hu, X., Xie, Y., & Li, Z. (2014). RUNX1 a transcription factor mutated in breast cancer, controls the fate of ER-positive mammary luminal cells. eLlife, 3, 03881.

    Google Scholar 

  • Van der Auwera, I., Yu, W., Suo, L., Van Neste, L., van Dam, P., Van Marck, E. A., et al. (2010). Array-based DNA methylation profiling for breast cancer subtype discrimination. PloS One, 5, e12616.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vecellio, M., Roberts, A. R., Cohen, C. J., Cortes, A., Knight, J. C., Bowness, P., et al. (2016). The genetic association of RUNX3 with ankylosing spondylitis can be explained by allele-specific effects on IRF4 recruitment that alter gene expression. Annals of the Rheumatic Diseases, 75, 1534–1540.

    Google Scholar 

  • Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz Jr., L. A., & Kinzler, K. W. (2013). Cancer genome landscapes. Science, 339, 1546–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldner, M. J., Wirtz, S., Jefremow, A., Warntjen, M., Neufert, C., Atreya, R., et al. (2010). VEGF receptor signaling links inflammation and tumorigenesis in colitis-associated cancer. The Journal of Experimental Medicine, 207, 2855–2868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. F., Broderick, P., Webb, E., Wu, X. F., Vijayakrishnan, J., Matakidou, A., et al. (2008). Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nature Genetics, 40, 1407–1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, K., Yuen, S. T., Xu, J., Lee, S. P., Yan, H. H., Shi, S. T., et al. (2014). Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nature Genetics, 46, 573–582.

    Article  CAS  PubMed  Google Scholar 

  • Weersma, R. K., Zhou, L., Nolte, I. M., van der Steege, G., van Dullemen, H. M., Oosterom, E., et al. (2008). Runt-related transcription factor 3 is associated with ulcerative colitis and shows epistasis with solute carrier family 22, members 4 and 5. Inflammatory Bowel Diseases, 14, 1615–1622.

    Article  PubMed  Google Scholar 

  • Whittle, M. C., Izeradjene, K., Rani, P. G., Feng, L., Carlson, M. A., DelGiorno, K. E., et al. (2015). RUNX3 controls a metastatic switch in pancreatic ductal adenocarcinoma. Cell, 161, 1345–1360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiegand, K. C., Shah, S. P., Al-Agha, O. M., Zhao, Y., Tse, K., Zeng, T., et al. (2010). ARID1A mutations in endometriosis-associated ovarian carcinomas. The New England Journal of Medicine, 363, 1532–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilderman, M. J., Kim, S., Gillespie, C. T., Sun, J., Kapoor, V., Vachani, A., et al. (2006). Blockade of TNF-alpha decreases both inflammation and efficacy of intrapulmonary Ad.IFNbeta immunotherapy in an orthotopic model of bronchogenic lung cancer. Molecular Therapy, 13, 910–917.

    Article  CAS  PubMed  Google Scholar 

  • Winkler, A. E., Brotman, J. J., Pittman, M. E., Judd, N. P., Lewis Jr., J. S., Schreiber, R. D., & Uppaluri, R. (2011). CXCR3 enhances a T-cell-dependent epidermal proliferative response and promotes skin tumorigenesis. Cancer Research, 71, 5707–5716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolpin, B. M., Rizzato, C., Kraft, P., Kooperberg, C., Petersen, G. M., Wang, Z., et al. (2014). Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nature Genetics, 46, 994–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolf, E., Xiao, C., Fainaru, O., Lotem, J., Rosen, D., Negreanu, V., et al. (2003). Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 7731–7736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolf, E., Brenner, O., Goldenberg, D., Levanon, D., & Groner, Y. (2007). Runx3 regulates dendritic epidermal T cell development. Developmental Biology, 303, 703–714.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J. N., & Roberts, C. W. (2013). ARID1A mutations in cancer: Another epigenetic tumor suppressor? Cancer Discovery, 3, 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Wu, D., Tian, Y., Gong, W., Zhu, H., Zhang, Z., Wang, M., et al. (2009). Genetic variants in the Runt-related transcription factor 3 gene contribute to gastric cancer risk in a Chinese population. Cancer Science, 100, 1688–1694.

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki, K., Umeno, J., Takahashi, A., Hirano, A., Johnson, T. A., Kumasaka, N., et al. (2013). A genome-wide association study identifies 2 susceptibility Loci for Crohn’s disease in a Japanese population. Gastroenterology, 144, 781–788.

    Article  CAS  PubMed  Google Scholar 

  • Yeddula, N., Xia, Y., Ke, E., Beumer, J., & Verma, I. M. (2015). Screening for tumor suppressors: Loss of ephrin receptor A2 cooperates with oncogenic KRas in promoting lung adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 112, E6476–E6485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida, C. A., Yamamoto, H., Fujita, T., Furuichi, T., Ito, K., Inoue, K., et al. (2004). Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes & Development, 18, 952–963.

    Article  CAS  Google Scholar 

  • Zack, T. I., Schumacher, S. E., Carter, S. L., Cherniack, A. D., Saksena, G., Tabak, B., et al. (2013). Pan-cancer patterns of somatic copy number alteration. Nature Genetics, 45, 1134–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zang, Z. J., Cutcutache, I., Poon, S. L., Zhang, S. L., McPherson, J. R., Tao, J., et al. (2012). Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nature Genetics, 44, 570–574.

    Article  CAS  PubMed  Google Scholar 

  • Zenewicz, L. A., Yancopoulos, G. D., Valenzuela, D. M., Murphy, A. J., Stevens, S., & Flavell, R. A. (2008). Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity, 29, 947–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, B., Jia, W. H., Matsuda, K., Kweon, S. S., Matsuo, K., Xiang, Y. B., et al. (2014). Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk. Nature Genetics, 46, 533–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, C., & Bu, X. (2012). Promoter methylation of tumor-related genes in gastric carcinogenesis. Histology and Histopathology, 27, 1271–1282.

    CAS  PubMed  Google Scholar 

  • Zouridis, H., Deng, N., Ivanova, T., Zhu, Y., Wong, B., Huang, D., et al. (2012). Methylation subtypes and large-scale epigenetic alterations in gastric cancer. Science Translational Medicine, 4, 156ra140.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The work was supported by the Israel Science Foundation (ISF) individual grant to YG and DL. We thank Elsevier publishers for permission to adapt and re-use in this review data we have previously published included in doi:10.1016/j.bbcan.2015.01.004 (Lotem et al. 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoram Groner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Lotem, J. et al. (2017). Runx3 in Immunity, Inflammation and Cancer. In: Groner, Y., Ito, Y., Liu, P., Neil, J., Speck, N., van Wijnen, A. (eds) RUNX Proteins in Development and Cancer. Advances in Experimental Medicine and Biology, vol 962. Springer, Singapore. https://doi.org/10.1007/978-981-10-3233-2_23

Download citation

Publish with us

Policies and ethics