Skip to main content

Structure and Biophysics of CBFβ/RUNX and Its Translocation Products

  • Chapter
  • First Online:
RUNX Proteins in Development and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 962))

Abstract

The core binding factor (CBF) transcription factor is somewhat unique in that it is composed of a DNA binding RUNX subunit (RUNX1, 2, or 3) and a non-DNA binding CBFβ subunit, which modulates RUNX protein activity by modulating the auto-inhibition of the RUNX subunits. Since the discovery of this fascinating transcription factor more than 20 years ago, there has been a robust effort to characterize the structure as well as the biochemical properties of CBF. More recently, these efforts have also extended to the fusion proteins that arise from the subunits of CBF in leukemia. This chapter highlights the work of numerous labs which has provided a detailed understanding of the structure and function of this transcription factor and its fusion proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn, M. Y., Huang, G., Bae, S. C., Wee, H. J., Kim, W. Y., & Ito, Y. (1998). Negative regulation of granulocytic differentiation in the myeloid precursor cell line 32Dcl3 by ear-2, a mammalian homolog of Drosophila seven-up, and a chimeric leukemogenic gene, AML1/ETO. Proceedings of the National Academy of Sciences of the United States of America, 95(4), 1812–1817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amann, J. M., Nip, J., Strom, D. K., Lutterbach, B., Harada, H., Lenny, N., et al. (2001). ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Molecular and Cellular Biology, 21(19), 6470–6483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backstrom, S., Wolf-Watz, M., Grundstrom, C., Hard, T., Grundstrom, T., & Sauer, U. H. (2002). The RUNX1 Runt domain at 1.25A resolution: A structural switch and specifically bound chloride ions modulate DNA binding. Journal of Molecular Biology, 322(2), 259–272.

    Article  CAS  PubMed  Google Scholar 

  • Berardi, M. J., Sun, C., Zehr, M., Abildgaard, F., Peng, J., Speck, N. A., & Bushweller, J. H. (1999). The Ig fold of the core binding factor alpha Runt domain is a member of a family of structurally and functionally related Ig-fold DNA-binding domains. Structure, 7(10), 1247–1256.

    Article  CAS  PubMed  Google Scholar 

  • Blyth, K., Cameron, E. R., & Neil, J. C. (2005). The RUNX genes: Gain or loss of function in cancer. Nature Reviews. Cancer, 5(5), 376–387.

    Article  CAS  PubMed  Google Scholar 

  • Bravo, J., Li, Z., Speck, N. A., & Warren, A. J. (2001). The leukemia-associated AML1 (Runx1)—CBF beta complex functions as a DNA-induced molecular clamp. Nature Structural Biology, 8(4), 371–378.

    Article  CAS  PubMed  Google Scholar 

  • Cao, W., Britos-Bray, M., Claxton, D. F., Kelley, C. A., Speck, N. A., Liu, P. P., & Friedman, A. D. (1997). CBF beta-SMMHC, expressed in M4Eo AML, reduced CBF DNA-binding and inhibited the G1 to S cell cycle transition at the restriction point in myeloid and lymphoid cells. Oncogene, 15(11), 1315–1327.

    Article  CAS  PubMed  Google Scholar 

  • Castilla, L. H., Wijmenga, C., Wang, Q., Stacy, T., Speck, N. A., Eckhaus, M., et al. (1996a). Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MYH11. Cell, 87(4), 687–696.

    Article  CAS  PubMed  Google Scholar 

  • Corpora, T., Roudaia, L., Oo, Z. M., Chen, W., Manuylova, E., Cai, X., et al. (2010). Structure of the AML1-ETO NHR3-PKA(RIIalpha) complex and its contribution to AML1-ETO activity. Journal of Molecular Biology, 402(3), 560–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowley, D. O., & Graves, B. J. (2000). Phosphorylation represses Ets-1 DNA binding by reinforcing autoinhibition. Genes & Development, 14(3), 366–376.

    CAS  Google Scholar 

  • Crute, B. E., Lewis, A. F., Wu, Z., Bushweller, J. H., & Speck, N. A. (1996). Biochemical and biophysical properties of the core-binding factor alpha2 (AML1) DNA-binding domain. The Journal of Biological Chemistry, 271(42), 26251–26260.

    Article  CAS  PubMed  Google Scholar 

  • Davis, J. N., Williams, B. J., Herron, J. T., Galiano, F. J., & Meyers, S. (1999). ETO-2, a new member of the ETO-family of nuclear proteins. Oncogene, 18(6), 1375–1383.

    Article  CAS  PubMed  Google Scholar 

  • Davis, J. N., McGhee, L., & Meyers, S. (2003). The ETO (MTG8) gene family. Gene, 303, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Erickson, P., Gao, J., Chang, K. S., Look, T., Whisenant, E., Raimondi, S., et al. (1992). Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood, 80(7), 1825–1831.

    CAS  PubMed  Google Scholar 

  • Fukuyama, T., Sueoka, E., Sugio, Y., Otsuka, T., Niho, Y., Akagi, K., & Kozu, T. (2001). MTG8 proto-oncoprotein interacts with the regulatory subunit of type II cyclic AMP-dependent protein kinase in lymphocytes. Oncogene, 20(43), 6225–6232.

    Article  CAS  PubMed  Google Scholar 

  • Gelmetti, V., Zhang, J., Fanelli, M., Minucci, S., Pelicci, P. G., & Lazar, M. A. (1998). Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Molecular and Cellular Biology, 18(12), 7185–7191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giese, K., Kingsley, C., Kirshner, J. R., & Grosschedl, R. (1995). Assembly and function of a TCR alpha enhancer complex is dependent on LEF-1-induced DNA bending and multiple protein-protein interactions. Genes & Development, 9(8), 995–1008.

    Article  CAS  Google Scholar 

  • Goetz, T. L., Gu, T. L., Speck, N. A., & Graves, B. J. (2000). Auto-inhibition of Ets-1 is counteracted by DNA binding cooperativity with core-binding factor alpha2. Molecular and Cellular Biology, 20(1), 81–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goger, M., Gupta, V., Kim, W. Y., Shigesada, K., Ito, Y., & Werner, M. H. (1999). Molecular insights into PEBP2/CBF beta-SMMHC associated acute leukemia revealed from the structure of PEBP2/CBF beta. Nature Structural Biology, 6(7), 620–623.

    Article  CAS  PubMed  Google Scholar 

  • Gu, T. L., Goetz, T. L., Graves, B. J., & Speck, N. A. (2000). Auto-inhibition and partner proteins, core-binding factor beta (CBFbeta) and Ets-1, modulate DNA binding by CBFalpha2 (AML1). Molecular and Cellular Biology, 20(1), 91–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollenhorst, P. C., Shah, A. A., Hopkins, C., & Graves, B. J. (2007). Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family. Genes & Development, 21(15), 1882–1894.

    Article  CAS  Google Scholar 

  • Hollenhorst, P. C., Chandler, K. J., Poulsen, R. L., Johnson, W. E., Speck, N. A., & Graves, B. J. (2009). DNA specificity determinants associate with distinct transcription factor functions. PLoS Genetics, 5(12), e1000778.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holmberg, C. I., Tran, S. E., Eriksson, J. E., & Sistonen, L. (2002). Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends in Biochemical Sciences, 27(12), 619–627.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Crute, B. E., Sun, C., Tang, Y. Y., Kelley 3rd, J. J., Lewis, A. F., et al. (1998). Overexpression, purification, and biophysical characterization of the heterodimerization domain of the core-binding factor beta subunit. The Journal of Biological Chemistry, 273(4), 2480–2487.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Peng, J. W., Speck, N. A., & Bushweller, J. H. (1999). Solution structure of core binding factor beta and map of the CBF alpha binding site. Nature Structural Biology, 6(7), 624–627.

    Article  CAS  PubMed  Google Scholar 

  • Huang, G., Shigesada, K., Wee, H. J., Liu, P. P., Osato, M., & Ito, Y. (2004). Molecular basis for a dominant inactivation of RUNX1/AML1 by the leukemogenic inversion 16 chimera. Blood, 103(8), 3200–3207.

    Article  CAS  PubMed  Google Scholar 

  • Hug, B. A., & Lazar, M. A. (2004). ETO interacting proteins. Oncogene, 23(24), 4270–4274.

    Article  CAS  PubMed  Google Scholar 

  • Kim, W. Y., Sieweke, M., Ogawa, E., Wee, H. J., Englmeier, U., Graf, T., & Ito, Y. (1999). Mutual activation of Ets-1 and AML1 DNA binding by direct interaction of their autoinhibitory domains. The EMBO Journal, 18(6), 1609–1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitabayashi, I., Ida, K., Morohoshi, F., Yokoyama, A., Mitsuhashi, N., Shimizu, K., et al. (1998). The AML1-MTG8 leukemic fusion protein forms a complex with a novel member of the MTG8(ETO/CDR) family, MTGR1. Molecular and Cellular Biology, 18(2), 846–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, G. M., Donaldson, L. W., Pufall, M. A., Kang, H. S., Pot, I., Graves, B. J., & McIntosh, L. P. (2005). The structural and dynamic basis of Ets-1 DNA binding autoinhibition. The Journal of Biological Chemistry, 280(8), 7088–7099.

    Article  CAS  PubMed  Google Scholar 

  • Lee, G. M., Pufall, M. A., Meeker, C. A., Kang, H. S., Graves, B. J., & McIntosh, L. P. (2008). The affinity of Ets-1 for DNA is modulated by phosphorylation through transient interactions of an unstructured region. Journal of Molecular Biology, 382(4), 1014–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Yan, J., Matheny, C. J., Corpora, T., Bravo, J., Warren, A. J., et al. (2003). Energetic contribution of residues in the Runx1 Runt domain to DNA binding. The Journal of Biological Chemistry, 278(35), 33088–33096.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Lukasik, S. M., Liu, Y., Grembecka, J., Bielnicka, I., Bushweller, J. H., & Speck, N. A. (2006). A mutation in the S-switch region of the Runt domain alters the dynamics of an allosteric network responsible for CBFbeta regulation. Journal of Molecular Biology, 364(5), 1073–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, P., Tarle, S. A., Hajra, A., Claxton, D. F., Marlton, P., Freedman, M., et al. (1993). Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science, 261(5124), 1041–1044.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Cheney, M. D., Gaudet, J. J., Chruszcz, M., Lukasik, S. M., Sugiyama, D., et al. (2006). The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO’s activity. Cancer Cell, 9(4), 249–260.

    Article  PubMed  Google Scholar 

  • Liu, Y., Chen, W., Gaudet, J., Cheney, M. D., Roudaia, L., Cierpicki, T., et al. (2007). Structural basis for recognition of SMRT/N-CoR by the MYND domain and its contribution to AML1/ETO’s activity. Cancer Cell, 11(6), 483–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Look, A. T. (1997). Oncogenic transcription factors in the human acute leukemias. Science, 278(5340), 1059–1064.

    Article  CAS  PubMed  Google Scholar 

  • Lukasik, S. M., Zhang, L., Corpora, T., Tomanicek, S., Li, Y., Kundu, M., et al. (2002). Altered affinity of CBFbeta-SMMHC for Runx1 explains its role in leukemogenesis. Nature Structural Biology, 9(9), 674–679.

    Article  CAS  PubMed  Google Scholar 

  • Lutterbach, B., Sun, D., Schuetz, J., & Hiebert, S. W. (1998). The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t(8;21) fusion protein. Molecular and Cellular Biology, 18(6), 3604–3611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandoli, A., Singh, A. A., Jansen, P. W. T. C., Wierenga, A. T. J., Riahi, H., Franci, G., et al. (2014). CBFB-MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia. Leukemia, 28(4), 770–778.

    Article  CAS  PubMed  Google Scholar 

  • Mangan, J. K., & Speck, N. A. (2011). RUNX1 mutations in clonal myeloid disorders: From conventional cytogenetics to next generation sequencing, a story 40 years in the making. Critical Reviews in Oncogenesis, 16(1–2), 77–91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Markus, J., Garin, M. T., Bies, J., Galili, N., Raza, A., Thirman, M. J., et al. (2007). Methylation-independent silencing of the tumor suppressor INK4b (p15) by CBFbeta-SMMHC in acute myelogenous leukemia with inv(16). Cancer Research, 67(3), 992–1000.

    Article  CAS  PubMed  Google Scholar 

  • Matheny, C. J., Speck, M. E., Cushing, P. R., Zhou, Y., Corpora, T., Regan, M., et al. (2007). Disease mutations in RUNX1 and RUNX2 create nonfunctional, dominant-negative, or hypomorphic alleles. The EMBO Journal, 26(4), 1163–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGhee, L., Bryan, J., Elliott, L., Grimes, H. L., Kazanjian, A., Davis, J. N., & Meyers, S. (2003). Gfi-1 attaches to the nuclear matrix, associates with ETO (MTG8) and histone deacetylase proteins, and represses transcription using a TSA-sensitive mechanism. Journal of Cellular Biochemistry, 89(5), 1005–1018.

    Article  CAS  PubMed  Google Scholar 

  • Nagata, T., Gupta, V., Sorce, D., Kim, W. Y., Sali, A., Chait, B. T., et al. (1999). Immunoglobulin motif DNA recognition and heterodimerization of the PEBP2/CBF Runt domain. Nature Structural Biology, 6(7), 615–619.

    Article  CAS  PubMed  Google Scholar 

  • Nucifora, G., Birn, D. J., Erickson, P., Gao, J., LeBeau, M. M., Drabkin, H. A., & Rowley, J. D. (1993). Detection of DNA rearrangements in the AML1 and ETO loci and of an AML1/ETO fusion mRNA in patients with t(8;21) acute myeloid leukemia. Blood, 81(4), 883–888.

    CAS  PubMed  Google Scholar 

  • Ogawa, E., Inuzuka, M., Maruyama, M., Satake, M., Naito-Fujimoto, M., Ito, Y., & Shigesada, K. (1993). Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha. Virology, 194(1), 314–331.

    Article  CAS  PubMed  Google Scholar 

  • Okuda, T., van Deursen, J., Hiebert, S. W., Grosveld, G., & Downing, J. R. (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 84, 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Otto, F., Kanegane, H., & Mundlos, S. (2002). Mutations in the RUNX2 gene in patients with cleidocranial dysplasia. Human Mutation, 19(3), 209–216.

    Article  CAS  PubMed  Google Scholar 

  • Park, S., Chen, W., Cierpicki, T., Tonelli, M., Cai, X., Speck, N. A., & Bushweller, J. H. (2009). Structure of the AML1-ETO eTAFH domain – HEB peptide complex and its contribution to AML1-ETO activity. Blood, 113, 3558–3567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Alvarado, G. C., Munnerlyn, A., Dyson, H. J., Grosschedl, R., & Wright, P. E. (2000). Identification of the regions involved in DNA binding by the mouse PEBP2alpha protein. FEBS Letters, 470(2), 125–130.

    Article  CAS  PubMed  Google Scholar 

  • Plevin, M. J., Zhang, J., Guo, C., Roeder, R. G., & Ikura, M. (2006). The acute myeloid leukemia fusion protein AML1-ETO targets E proteins via a paired amphipathic helix-like TBP-associated factor homology domain. Proceedings of the National Academy of Sciences of the United States of America, 103(27), 10242–10247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pufall, M. A., Lee, G. M., Nelson, M. L., Kang, H. S., Velyvis, A., Kay, L. E., et al. (2005). Variable control of Ets-1 DNA binding by multiple phosphates in an unstructured region. Science, 309(5731), 142–145.

    Article  CAS  PubMed  Google Scholar 

  • Roudaia, L., Cheney, M. D., Manuylova, E., Chen, W., Morrow, M., Park, S., et al. (2009). CBF{beta} is critical for AML1-ETO and TEL-AML1 activity. Blood, 113, 3070–3079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubnitz, J. E., & Look, A. T. (1998). Molecular basis of leukemogenesis. Current Opinion in Hematology, 5(4), 264–270.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki, K., Yagi, H., Bronson, R. T., Tominaga, K., Matsunashi, T., Deguchi, K., et al. (1996). Absence of fetal liver hematopoiesis in transcriptional co-activator, core binding factor b (Cbfb) deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 93, 12359–12363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrivastava, T., Mino, K., Babayeva, N. D., Baranovskaya, O. I., Rizzino, A., & Tahirov, T. H. (2014). Structural basis of Ets1 activation by Runx1. Leukemia, 28(10), 2040–2048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skalicky, J. J., Donaldson, L. W., Petersen, J. M., Graves, B. J., & McIntosh, L. P. (1996). Structural coupling of the inhibitory regions flanking the ETS domain of murine Ets-1. Protein Science, 5(2), 296–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, W., Graves, B. J., & Speck, N. A. (1995). Transactivation of the Moloney murine leukemia virus and T-cell receptor beta-chain enhancers by cbf and ets requires intact binding sites for both proteins. Journal of Virology, 69(8), 4941–4949.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, X. J., Wang, Z., Wang, L., Jiang, Y., Kost, N., Soong, T. D., et al. (2013). A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis. Nature, 500(7460), 93–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahirov, T. H., Inoue-Bungo, T., Morii, H., Fujikawa, A., Sasaki, M., Kimura, K., et al. (2001). Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell, 104(5), 755–767.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Y. Y., Crute, B. E., Kelley, J. J., Huang, X., Yan, J., Shi, J., et al. (2000a). Biophysical characterization of interactions between the core binding factor alpha and beta subunits and DNA. FEBS Letters, 470(2), 167–172.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Y. Y., Shi, J., Zhang, L., Davis, A., Bravo, J., Warren, A. J., et al. (2000b). Energetic and functional contribution of residues in the core binding factor beta (CBFbeta ) subunit to heterodimerization with CBFalpha. The Journal of Biological Chemistry, 275(50), 39579–39588.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., Stacy, T., Binder, M., Marín-Padilla, M., Sharpe, A. H., & Speck, N. A. (1996a). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 93, 3444–3449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Stacy, T., Miller, J. D., Lewis, A. F., Huang, X., Bories, J.-C., et al. (1996b). The CBFb subunit is essential for CBFa2 (AML1) function in vivo. Cell, 87, 697–708.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Hoshino, T., Redner, R. L., Kajigaya, S., & Liu, J. M. (1998). ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proceedings of the National Academy of Sciences of the United States of America, 95(18), 10860–10865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren, A. J., Bravo, J., Williams, R. L., & Rabbitts, T. H. (2000). Structural basis for the heterodimeric interaction between the acute leukaemia-associated transcription factors AML1 and CBFbeta. The EMBO Journal, 19(12), 3004–3015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, Y., Liu, S., Lausen, J., Woodrell, C., Cho, S., Biris, N., et al. (2007). A TAF4-homology domain from the corepressor ETO is a docking platform for positive and negative regulators of transcription. Nature Structural & Molecular Biology, 14(7), 653–661.

    Article  CAS  Google Scholar 

  • Wotton, D., Ghysdael, J., Wang, S., Speck, N. A., & Owen, M. J. (1994). Cooperative binding of Ets-1 and core binding factor to DNA. Molecular and Cellular Biology, 14(1), 840–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, J., Liu, Y., Lukasik, S. M., Speck, N. A., & Bushweller, J. H. (2004). CBFbeta allosterically regulates the Runx1 Runt domain via a dynamic conformational equilibrium. Nature Structural & Molecular Biology, 11(9), 901–906.

    Article  CAS  Google Scholar 

  • Yang, H. T., Wu, D. H., Xue, X. Y., Liang, W. X., Miao, X. Y., Pang, H., & Chen, S. J. (2004). Cloning, expression, purification and crystallization of NHR3 domain from acute myelogenous leukemia-related protein AML1-ETO. Acta Biochimica et Biophysica Sinica (Shanghai), 36(8), 566–570.

    Article  CAS  Google Scholar 

  • Zhang, J., Kalkum, M., Yamamura, S., Chait, B. T., & Roeder, R. G. (2004). E protein silencing by the leukemogenic AML1-ETO fusion protein. Science, 305(5688), 1286–1289.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Bushweller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Tahirov, T.H., Bushweller, J. (2017). Structure and Biophysics of CBFβ/RUNX and Its Translocation Products. In: Groner, Y., Ito, Y., Liu, P., Neil, J., Speck, N., van Wijnen, A. (eds) RUNX Proteins in Development and Cancer. Advances in Experimental Medicine and Biology, vol 962. Springer, Singapore. https://doi.org/10.1007/978-981-10-3233-2_2

Download citation

Publish with us

Policies and ethics