Skip to main content

Serine Proteases and Their Inhibitors in Human Health and Disease

  • Chapter
  • First Online:
Proteases in Human Diseases

Abstract

Serine proteases and their inhibitors are being extensively studied in the past few decades, accentuating their pivotal role in diverse biological processes. In this chapter, we have discussed about their role as drug targets, associated pathologies and therapeutic interventions. Fine tune equilibrium between proteolytic enzymes and their respective inhibitors enables normal functions of the body. The upregulation or downregulation of this class of molecules is deleterious and results in various diseased conditions like inflammation, cancer, skin diseases, atherosclerosis, immunological disorders, coagulation abnormalities, pulmonary and neuronal disorders, and other pathologies. Several approaches to illustrate this relationship are comprehended with consequent stress on how these findings apply to pathologies that are the outcome of malfunction of serine proteases or their inhibitors. We have outlined the history and classification of proteases and their inhibitors as therapeutics and drug targets. Also an overview of their current clinical applications and approaches to improve and expand their use is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Puente XS, Sánchez LM, Gutiérrez-Fernández A et al (2005) A genomic view of the complexity of mammalian proteolytic systems. Biochem Soc Trans 33:331–334

    Article  CAS  PubMed  Google Scholar 

  2. Rawlings ND, Barrett AJ, Finn R (2015) Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 44:343–350

    Article  CAS  Google Scholar 

  3. Royston D (1996) Preventing the inflammatory response to open-heart surgery: the role of aprotinin and other protease inhibitors. Int J Cardiol 53:S11–S37

    Article  PubMed  Google Scholar 

  4. Berquin IM, Sloane BF (1996) Cathepsin B expression in human tumors. Adv Exp Med Biol 389:281–294

    Article  CAS  PubMed  Google Scholar 

  5. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799

    Article  CAS  PubMed  Google Scholar 

  6. Rawlings ND, Morton FR, Kok CY, Kong JBA (2007) MEROPS: the peptidase database. Nucleic Acids Res 36:D320–D325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Duffy M, McGowan P, Gallagher W (2008) Cancer invasion and metastasis: changing views. J Pathol 214:283–293

    Article  CAS  PubMed  Google Scholar 

  8. Craik CS, Page MJ, Madison EL (2011) Proteases as therapeutics. Biochem J 435:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dass K, Ahmad A, Azmi AS et al (2008) Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev 34:122–136

    Article  CAS  PubMed  Google Scholar 

  10. Dillon PW, Jones GR, Bagnall-Reeb HA et al (2004) Prophylactic urokinase in the management of long-term venous access devices in children: a Children’s Oncology Group study. J Clin Oncol 22:2718–2723

    Article  CAS  PubMed  Google Scholar 

  11. Rijken DC, Lijnen HR (2009) New insights into the molecular mechanisms of the fibrinolytic system. J Thromb Haemost 7:4–13

    Article  CAS  PubMed  Google Scholar 

  12. Hoylaerts M, Rijken DC, Lijnen HR, Collen D (1982) Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem 257:2912–2919

    CAS  PubMed  Google Scholar 

  13. Semba CP, Sugimoto K, Razavi MK, Society of Cardiovascular and Interventional Radiology (SCVIR) (2001) Alteplase and tenecteplase: applications in the peripheral circulation. Tech Vasc Interv Radiol 4:99–106

    Google Scholar 

  14. Ambrus JL, Ambrus CM, Back N et al (1957) Clinical and experimental studies on fibrinolytic enzymes. Ann N Y Acad Sci 68:97–137

    Article  CAS  PubMed  Google Scholar 

  15. Eley RC, Green AA, McKhann CF et al (1936) The use of a blood coagulant extract from the human placenta in the treatment of hemophilia. J Pediatr 8:135–147

    Article  CAS  Google Scholar 

  16. Pipe SW, Kaufman RJ (2000) A chamber of hope for hemophilia. Nat Biotechnol 18:264–265

    Article  CAS  PubMed  Google Scholar 

  17. Di Cera E (2008) Thrombin. Mol Aspects Med 29:203–254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Coughlin SR (2005) Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 3:1800–1814

    Article  CAS  PubMed  Google Scholar 

  19. DI Cera E (2007) Thrombin as procoagulant and anticoagulant. J Thromb Haemost 5:196–202

    Article  PubMed  Google Scholar 

  20. Van De Locht A, Stubbs MT, Bauer M, Bode W (1996) Crystallographic evidence that the F2 kringle catalytic domain linker of prothrombin does not cover the fibrinogen recognition exosite. J Biol Chem 271(7):3413–3416

    Google Scholar 

  21. Bowman LJ, Anderson CD, Chapman WC (2010) Topical recombinant human thrombin in surgical hemostasis. Semin Thromb Hemost 36:477–484

    Article  CAS  PubMed  Google Scholar 

  22. Esmon CT (2006) The endothelial protein C receptor. Curr Opin Hematol 13:382–385

    Article  CAS  PubMed  Google Scholar 

  23. Kisiel W (1979) Human plasma protein C: isolation, characterization, and mechanism of activation by alpha-thrombin. J Clin Invest 64:761–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Esmon CT (2006) Inflammation and the activated protein C anticoagulant pathway. Semin Thromb Hemost 32(Suppl 1):49–60

    Article  CAS  PubMed  Google Scholar 

  25. Riewald M, Petrovan RJ, Donner A et al (2002) Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 296:1880–1882

    Article  CAS  PubMed  Google Scholar 

  26. Joyce DE, Gelbert L, Ciaccia A et al (2001) Gene expression profile of antithrombotic protein c defines new mechanisms modulating inflammation and apoptosis. J Biol Chem 276:11199–11203

    Article  CAS  PubMed  Google Scholar 

  27. Nakanishi-Matsui M, Zheng YW, Sulciner DJ et al (2000) PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404:609–613

    Article  CAS  PubMed  Google Scholar 

  28. Yang XV, Banerjee Y, Fernández JA et al (2009) Activated protein C ligation of ApoER2 (LRP8) causes Dab1-dependent signaling in U937 cells. Proc Natl Acad Sci U S A 106:274–279

    Article  CAS  PubMed  Google Scholar 

  29. Elphick GF, Sarangi PP, Hyun Y-M et al (2009) Recombinant human activated protein C inhibits integrin-mediated neutrophil migration. Blood 113:4078–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bhana N, Spencer CM (2000) Lanoteplase. BioDrugs 13:217–224

    Article  CAS  PubMed  Google Scholar 

  31. Borgoño CA, Diamandis EP (2004) The emerging roles of human tissue kallikreins in cancer. Nat Rev Cancer 4:876–890

    Article  PubMed  CAS  Google Scholar 

  32. Gabriel D, Zuluaga MF, van den Bergh H et al (2011) It is all about proteases: from drug delivery to in vivo imaging and photomedicine. Curr Med Chem 18:1785–1805

    Article  CAS  PubMed  Google Scholar 

  33. Cleutjens KB, van Eekelen CC, van der Korput HA et al (1996) Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specific antigen promoter. J Biol Chem 271:6379–6388

    Article  CAS  PubMed  Google Scholar 

  34. Yousef GM, Diamandis EP (2001) The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr Rev 22:184–204

    CAS  PubMed  Google Scholar 

  35. López-Otín C, Matrisian LM (2007) Emerging roles of proteases in tumor suppression. Nat Rev Cancer 7:800–808

    Article  PubMed  CAS  Google Scholar 

  36. Réhault S, Monget P, Mazerbourg S et al (2001) Insulin-like growth factor binding proteins (IGFBPs) as potential physiological substrates for human kallikreins hK2 and hK3. Eur J Biochem 268:2960–2968

    Article  PubMed  Google Scholar 

  37. Takayama TK, McMullen BA, Nelson PS et al (2001) Characterization of hK4 (prostase), a prostate-specific serine protease: activation of the precursor of prostate specific antigen (pro-PSA) and single-chain urokinase-type plasminogen activator and degradation of prostatic acid phosphatase. Biochemistry 40:15341–15348

    Article  CAS  PubMed  Google Scholar 

  38. Pepper MS (2001) Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21:1104–1117

    Article  CAS  PubMed  Google Scholar 

  39. Fortier AH, Nelson BJ, Grella DK, Holaday JW (1999) Antiangiogenic activity of prostate-specific antigen. J Natl Cancer Inst 91:1635–1640

    Article  CAS  PubMed  Google Scholar 

  40. Desrivières S, Lu H, Peyri N et al (1993) Activation of the 92 kDa type IV collagenase by tissue kallikrein. J Cell Physiol 157:587–593

    Article  PubMed  Google Scholar 

  41. Foekens JA, Peters HA, Look MP et al (2000) The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Res 60:636–643

    CAS  PubMed  Google Scholar 

  42. Duffy MJ, Maguire TM, McDermott EW, O’Higgins N (1999) Urokinase plasminogen activator: a prognostic marker in multiple types of cancer. J Surg Oncol 71:130–135

    Article  CAS  PubMed  Google Scholar 

  43. Miyake H, Hara I, Yamanaka K et al (1999) Elevation of serum levels of urokinase-type plasminogen activator and its receptor is associated with disease progression and prognosis in patients with prostate cancer. Prostate 39:123–129

    Article  CAS  PubMed  Google Scholar 

  44. Stephens RW, Nielsen HJ, Christensen IJ et al (1999) Plasma urokinase receptor levels in patients with colorectal cancer: relationship to prognosis. J Natl Cancer Inst 91:869–874

    Article  CAS  PubMed  Google Scholar 

  45. Morris DR, Ding Y, Ricks TK et al (2006) Protease-activated receptor-2 is essential for factor VIIa and Xa-induced signaling, migration, and invasion of breast cancer cells. Cancer Res 66:307–314

    Article  CAS  PubMed  Google Scholar 

  46. Ovaere P, Lippens S, Vandenabeele P, Declercq W (2009) The emerging roles of serine protease cascades in the epidermis. Trends Biochem Sci 34:453–463

    Article  CAS  PubMed  Google Scholar 

  47. Sandilands A, O’Regan GM, Liao H, Zhao Y, Terron-Kwiatkowski A, Watson RM, Cassidy AJ, Goudie DR, Smith FJ, McLean WH, Irvine AD (2006) Prevalent and rare mutations in the gene encoding filaggrin cause ichthyosis vulgaris and predispose individuals to atopic dermatitis. J Invest Dermatol 126:1770–1775

    Article  CAS  PubMed  Google Scholar 

  48. Netzel-Arnett S, Currie BM, Szabo R et al (2006) Evidence for a matriptase-prostasin proteolytic cascade regulating terminal epidermal differentiation. J Biol Chem 281:32941–32945

    Article  CAS  PubMed  Google Scholar 

  49. Bugge TH, List K, Szabo R (2007) Matriptase-dependent cell surface proteolysis in epithelial development and pathogenesis. Front Biosci 12:5060–5070

    Article  CAS  PubMed  Google Scholar 

  50. Alef T, Torres S, Hausser I et al (2009) Ichthyosis, follicular atrophoderma, and hypotrichosis caused by mutations in ST14 is associated with impaired profilaggrin processing. J Invest Dermatol 129:862–869

    Article  CAS  PubMed  Google Scholar 

  51. Tseng I-C, Xu H, Chou F-P et al (2010) Matriptase activation, an early cellular response to acidosis. J Biol Chem 285:3261–3270. doi:10.1074/jbc.M109.055640

    Article  CAS  PubMed  Google Scholar 

  52. Chen Y-W, Wang J-K, Chou F-P et al (2010) Regulation of the matriptase-prostasin cell surface proteolytic cascade by hepatocyte growth factor activator inhibitor-1 during epidermal differentiation. J Biol Chem 285:31755–31762. doi:10.1074/jbc.M110.150367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sales KU, Masedunskas A, Bey AL et al (2010) Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of Netherton syndrome. Nat Genet 42:676–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Borgoño CA, Michael IP, Komatsu N et al (2007) A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J Biol Chem 282:3640–3652

    Article  PubMed  CAS  Google Scholar 

  55. Lundwall A, Brattsand M (2008) Kallikrein-related peptidases. Cell Mol Life Sci 65:2019–2038

    Article  CAS  PubMed  Google Scholar 

  56. Eissa A, Amodeo V, Smith CR, Diamandis EP (2011) Kallikrein-related peptidase-8 (KLK8) is an active serine protease in human epidermis and sweat and is involved in a skin barrier proteolytic cascade. J Biol Chem 286:687–706

    Article  CAS  PubMed  Google Scholar 

  57. Lundström A, Egelrud T (1988) Cell shedding from human plantar skin in vitro: evidence of its dependence on endogenous proteolysis. J Invest Dermatol 91:340–343

    Article  PubMed  Google Scholar 

  58. Faurschou M, Borregaard N (2003) Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 5:1317–1327

    Article  CAS  PubMed  Google Scholar 

  59. Brinkmann V, Reichard U, Goosmann C et al (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  CAS  PubMed  Google Scholar 

  60. Wiedow O, Wiese F, Streit V, Kalm CCE (1992) Lesional elastase activity in psoriasis, contact dermatitis, and atopic dermatitis. J Invest Dermatol 99:306–309

    Article  CAS  PubMed  Google Scholar 

  61. Meyer-Hoffert U, Wiedow O (2011) Neutrophil serine proteases: mediators of innate immune responses. Curr Opin Hematol 18:19–24

    Article  CAS  PubMed  Google Scholar 

  62. Turgeon VL, Houenou LJ (1997) The role of thrombin-like (serine) proteases in the development, plasticity and pathology of the nervous system. Brain Res Rev 25:85–95

    Article  CAS  PubMed  Google Scholar 

  63. Turgeon VL, Salman N, Houenou LJ et al (2000) Thrombin. Thromb Res 99:417–427

    Article  CAS  PubMed  Google Scholar 

  64. de La Houssaye BA, Mikule K, Nikolic D, Pfenninger KH (1999) Thrombin-induced growth cone collapse: involvement of phospholipase A(2) and eicosanoid generation. J Neurosci 19:10843–10855

    Google Scholar 

  65. Gill JS, Pitts K, Rusnak FM et al (1998) Thrombin induced inhibition of neurite outgrowth from dorsal root ganglion neurons. Brain Res 797:321–327

    Article  CAS  PubMed  Google Scholar 

  66. Rohatgi T, Sedehizade F, Reymann KG, Reiser G (2004) Protease-activated receptors in neuronal development, neurodegeneration, and neuroprotection: thrombin as signaling molecule in the brain. Neuroscientist 10:501–512

    Article  CAS  PubMed  Google Scholar 

  67. Chávez-Galán L, Arenas-Del Angel MC, Zenteno E et al (2009) Cell death mechanisms induced by cytotoxic lymphocytes. Cell Mol Immunol 6:15–25

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mhatre M, Nguyen A, Kashani S et al (2004) Thrombin, a mediator of neurotoxicity and memory impairment. Neurobiol Aging 25:783–793

    Article  CAS  PubMed  Google Scholar 

  69. Lochner JE, Honigman LS, Grant WF et al (2006) Activity-dependent release of tissue plasminogen activator from the dendritic spines of hippocampal neurons revealed by live-cell imaging. J Neurobiol 66:564–577

    Article  CAS  PubMed  Google Scholar 

  70. Samson AL, Medcalf RL, Baranes D et al (2006) Tissue-type plasminogen activator: a multifaceted modulator of neurotransmission and synaptic plasticity. Neuron 50:673–678

    Article  CAS  PubMed  Google Scholar 

  71. Samson AL, Nevin ST, Croucher D et al (2008) Tissue-type plasminogen activator requires a co-receptor to enhance NMDA receptor function. J Neurochem 107:1091–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cullen SP, Martin SJ (2008) Mechanisms of granule-dependent killing. Cell Death Differ 15:251–262

    Article  CAS  PubMed  Google Scholar 

  73. Bratke K, Kuepper M, Bade B et al (2005) Differential expression of human granzymes A, B, and K in natural killer cells and during CD8+ T cell differentiation in peripheral blood. Eur J Immunol 35:2608–2616

    Article  CAS  PubMed  Google Scholar 

  74. Bade B, Lohrmann J, ten Brinke A et al (2005) Detection of soluble human granzyme K in vitro and in vivo. Eur J Immunol 35:2940–2948

    Article  CAS  PubMed  Google Scholar 

  75. Grossman WJ, Verbsky JW, Barchet W et al (2004) Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21:589–601

    Article  CAS  PubMed  Google Scholar 

  76. Romero V, Andrade F (2008) Non-apoptotic functions of granzymes. Tissue Antigens 71:409–416

    Article  CAS  PubMed  Google Scholar 

  77. Grassi M, Capello F, Bertolino L et al (2009) Identification of granzyme B-expressing CD-8-positive T cells in lymphocytic inflammatory infiltrate in cutaneous lupus erythematosus and in dermatomyositis. Clin Exp Dermatol 34:910–914

    Article  CAS  PubMed  Google Scholar 

  78. Méthot N, Rubin J, Guay D et al (2007) Inhibition of the activation of multiple serine proteases with a cathepsin C inhibitor requires sustained exposure to prevent pro-enzyme processing. J Biol Chem 282:20836–20846

    Article  PubMed  CAS  Google Scholar 

  79. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6:173–182

    Article  CAS  PubMed  Google Scholar 

  80. Langhorst J, Elsenbruch S, Koelzer J et al (2008) Noninvasive markers in the assessment of intestinal inflammation in inflammatory bowel diseases: performance of fecal lactoferrin, calprotectin, and PMN-elastase, CRP, and clinical indices. Am J Gastroenterol 103:162–169

    Article  PubMed  Google Scholar 

  81. Tzortzaki EG, Lambiri I, Vlachaki E, Siafakas NM (2007) Biomarkers in COPD. Curr Med Chem 14:1037–1048

    Article  CAS  PubMed  Google Scholar 

  82. Roghanian A, Sallenave J-M (2008) Neutrophil elastase (NE) and NE inhibitors: canonical and noncanonical functions in lung chronic inflammatory diseases (cystic fibrosis and chronic obstructive pulmonary disease). J Aerosol Med Pulm Drug Deliv 21:125–144

    Article  CAS  PubMed  Google Scholar 

  83. Cooley J, McDonald B, Accurso FJ et al (2008) Patterns of neutrophil serine protease-dependent cleavage of surfactant protein D in inflammatory lung disease. J Leukoc Biol 83:946–955

    Article  CAS  PubMed  Google Scholar 

  84. Döring G, Frank F, Boudier C et al (1995) Cleavage of lymphocyte surface antigens CD2, CD4, and CD8 by polymorphonuclear leukocyte elastase and cathepsin G in patients with cystic fibrosis. J Immunol 154:4842–4850

    PubMed  Google Scholar 

  85. Kallenberg CG (2008) Pathogenesis of PR3-ANCA associated vasculitis. J Autoimmun 30:29–36

    Article  CAS  PubMed  Google Scholar 

  86. Pejler G, Åbrink M, Ringvall M, Wernersson S (2007) Mast cell proteases. Adv Immunol 95:167–255

    Article  CAS  PubMed  Google Scholar 

  87. Sakai K, Ren S, Schwartz LB (1996) A novel heparin-dependent processing pathway for human tryptase. Autocatalysis followed by activation with dipeptidyl peptidase I. J Clin Invest 97:988–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Strik MCM, de Koning PJA, Kleijmeer MJ et al (2007) Human mast cells produce and release the cytotoxic lymphocyte associated protease granzyme B upon activation. Mol Immunol 44:3462–3472

    Article  CAS  PubMed  Google Scholar 

  89. Kovanen PT (2007) Mast cells: multipotent local effector cells in atherothrombosis. Immunol Rev 217:105–122

    Article  CAS  PubMed  Google Scholar 

  90. Schwartz LB, Bradford TR, Rouse C et al (1994) Development of a new, more sensitive immunoassay for human tryptase: use in systemic anaphylaxis. J Clin Immunol 14:190–204

    Article  CAS  PubMed  Google Scholar 

  91. Hartveit F, Thoresen S, Tangen M, Maartmann-Moe H (1984) Mast cell changes and tumor dissemination in human breast carcinoma. Invasion Metastasis 4:146–155

    CAS  PubMed  Google Scholar 

  92. Blank U, Essig M, Scandiuzzi L et al (2007) Mast cells and inflammatory kidney disease. Immunol Rev 217:79–95

    Article  CAS  PubMed  Google Scholar 

  93. Frungieri MB, Weidinger S, Meineke V et al (2002) Proliferative action of mast-cell tryptase is mediated by PAR2, COX2, prostaglandins, and PPAR gamma: possible relevance to human fibrotic disorders. Proc Natl Acad Sci U S A 99:15072–15077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Erin EM, Leaker BR, Zacharasiewicz A et al (2006) Effects of a reversible beta-tryptase and trypsin inhibitor (RWJ-58643) on nasal allergic responses. Clin Exp Allergy 36:458–464

    Article  CAS  PubMed  Google Scholar 

  95. Fermi C, Pernossi L (1894) Ueber die Enzyme. Zeitschrift für Hyg und Infekt 18:83–127

    Article  Google Scholar 

  96. Huntington JA, Read RJ, Carrell RW (2000) Structure of a serpin-protease complex shows inhibition by deformation. Nature 407:923–926

    Article  CAS  PubMed  Google Scholar 

  97. Vijaya Rachel K, Sirisha Gandreddi V D (2014) A review of protease inhibitors from different sources. Int J Appl Phys Bio-Chem Res 4:1–18

    Google Scholar 

  98. Law RHP, Zhang Q, McGowan S et al (2006) An overview of the serpin superfamily. Genome Biol 7:216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Rawlings ND (2010) Peptidase inhibitors in the MEROPS database. Biochimie 92:1463–1483

    Article  CAS  PubMed  Google Scholar 

  100. Potempa J, Korzus E, Travis J (1994) The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J Biol Chem 269:15957–15960

    CAS  PubMed  Google Scholar 

  101. van Gent D, Sharp P, Morgan K, Kalsheker N (2003) Serpins: structure, function and molecular evolution. Int J Biochem Cell Biol 35:1536–1547

    Article  PubMed  CAS  Google Scholar 

  102. Carrell RW, Pemberton PA, Boswell DR (1987) The serpins: evolution and adaptation in a family of protease inhibitors. Cold Spring Harb Symp Quant Biol 52:527–535

    Article  CAS  PubMed  Google Scholar 

  103. Heit C, Jackson BC, McAndrews M et al (2013) Update of the human and mouse serpin gene superfamily. Hum Genomics 7:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Irving JA, Pike RN, Lesk AM, Whisstock JC (2000) Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function. Genome Res 10:1845–1864

    Article  CAS  PubMed  Google Scholar 

  105. Ragg H, Lokot T, Kamp PB et al (2001) Vertebrate serpins: construction of a conflict-free phylogeny by combining exon-intron and diagnostic site analyses. Mol Biol Evol 18:577–584

    Article  CAS  PubMed  Google Scholar 

  106. Silverman GA, Bird PI, Carrell RW et al (2001) The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 276:33293–33296

    Article  CAS  PubMed  Google Scholar 

  107. Kumar A, Ragg H, Silverman G et al (2008) Ancestry and evolution of a secretory pathway serpin. BMC Evol Biol 8:250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Ray CA, Black RA, Kronheim SR et al (1992) Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1β converting enzyme. Cell 69:597–604

    Article  CAS  PubMed  Google Scholar 

  109. Irving JA, Pike RN, Dai W et al (2002) Evidence that serpin architecture intrinsically supports papain-like cysteine protease inhibition: engineering alpha(1)-antitrypsin to inhibit cathepsin proteases. Biochemistry 41:4998–5004

    Article  CAS  PubMed  Google Scholar 

  110. Nagata K (1996) Hsp47: a collagen-specific molecular chaperone. Trends Biochem Sci 21:22–26

    Article  CAS  PubMed  Google Scholar 

  111. Pemberton PA, Stein PE, Pepys MB et al (1988) Hormone binding globulins undergo serpin conformational change in inflammation. Nature 336:257–258

    Article  CAS  PubMed  Google Scholar 

  112. Zou Z, Anisowicz A, Hendrix MJ et al (1994) Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science 263:526–529

    Article  CAS  PubMed  Google Scholar 

  113. Nakashima T, Pak SC, Silverman GA et al (2000) Genomic cloning, mapping, structure and promoter analysis of HEADPIN, a serpin which is down-regulated in head and neck cancer cells. Biochim Biophys Acta 1492:441–446

    Article  CAS  PubMed  Google Scholar 

  114. Hedstrom L (2002) Serine protease mechanism and specificity. Chem Rev 102:4501–4524

    Article  CAS  PubMed  Google Scholar 

  115. Abbenante G, Fairlie DP (2005) Protease inhibitors in the clinic. Med Chem (Shāriqah (United Arab Emirates)) 1:71–104

    Google Scholar 

  116. Page MJ, Cera E Di, Page MJ, Di Cera E (2008) Serine proteases and serine protease inhibitors. Wiley Encycl Chem Biol

    Google Scholar 

  117. Travis J, Salvesen GS (1983) Human plasma proteinase inhibitors. Annu Rev Biochem 52:655–709

    Article  CAS  PubMed  Google Scholar 

  118. Ansari MJ (2015) Role of protease inhibitors in Insulin therapy of Diabetes: are these beneficial? Bull Environ Pharmacol Life Sci 4:01–08

    CAS  Google Scholar 

  119. Ohtomo S, Nangaku M, Izuhara Y et al (2008) The role of megsin, a serine protease inhibitor, in diabetic mesangial matrix accumulation. Kidney Int 74:768–774

    Article  CAS  PubMed  Google Scholar 

  120. Hida K, Wada J, Eguchi J et al (2005) Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci 102:10610–10615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Molinari F, Meskanaite V, Munnich A et al (2003) Extracellular proteases and their inhibitors in genetic diseases of the central nervous system. Hum Mol Genet R195–R200

    Google Scholar 

  122. Schalkwijk J, Wiedow O, Hirose S (1999) The trappin gene family: proteins defined by an N-terminal transglutaminase substrate domain and a C-terminal four-disulphide core. Biochem J 340:569–77. doi:10.1042/bj3400569

  123. Wiedow O, Schröder JM, Gregory H et al (1990) Elafin: an elastase-specific inhibitor of human skin. Purification, characterization, and complete amino acid sequence. J Biol Chem 265:14791–14795

    CAS  PubMed  Google Scholar 

  124. Ranganathan S, Mukhopadhyay T (2010) Dandruff: the most commercially exploited skin disease. Indian J Dermatol 55:130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rachel KV, Vimala Y, Apta Chaitanya D (2013) A trypsin inhibitor-SNTI with antidandruff activity from Sapindus trifoliatus. Indian J Appl Res 3:3–5

    Article  Google Scholar 

  126. Yamaya M, Shimotai Y, Hatachi Y, Morio H, Nishimura H (2016) Serine proteases and their inhibitors in human airway epithelial cells: effects on influenza virus replication and airway serine proteases and their inhibitors in human airway epithelial cells: effects on influenza virus replication and airway inflammation. Clin Microbiol 5:1–10

    Article  Google Scholar 

  127. Zheng D, Chen H, Davids J et al (2013) Serpins for diagnosis and therapy in cancer. Cardiovasc Hematol Disord Drug Targets 13:123–132

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vijaya Rachel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Rachel, K.V., Sirisha, G.V.D. (2017). Serine Proteases and Their Inhibitors in Human Health and Disease. In: Chakraborti, S., Chakraborti, T., Dhalla, N. (eds) Proteases in Human Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-10-3162-5_10

Download citation

Publish with us

Policies and ethics