Skip to main content

Surface-Imaging-Based Patient Positioning in Radiation Therapy

  • Chapter
  • First Online:
Image-Based Computer-Assisted Radiation Therapy

Abstract

The accelerating advancement in surface-imaging technology has led to promising possibilities with respect to monitoring patient positioning during radiation therapy without the use of radiographic imaging. The aim of this chapter is to introduce theoretical aspects and key computational techniques utilized in estimating positioning errors and analysing the patient’s surface during radiation treatment. In particular, we provide an overview of current surface-imaging technologies. Next, we introduce quantitative approaches for mathematical reconstruction of a patient’s surface using non-uniform rational B-spline (NURBS) modelling and subsequently characterizing of the local shapes of the patient’s surface based on differential geometry. In addition, an iterative closest point (ICP) registration algorithm, which is a basic technique for estimating positioning errors, is explained. We hope that the topics covered in this chapter will be assistive in understanding the current applications in the field and will create launching points for the development of novel solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agam G, Tang X (2005) A sampling framework for accurate curvature estimation in discrete surfaces. IEEE Trans Vis Comput Graph 11(5):573–583

    Article  PubMed  Google Scholar 

  • Bauer S, Seitel S, Hoffman H et al (2013) Real-time range imaging in health care: a survey. In: Time-of-Flight and depth imaging. Sensors, algorithms, and applications, LNCS, vol 8200, pp 228–254

    Chapter  Google Scholar 

  • Bergström P (2011) Computational methods for shape verification of free form surfaces. Doctoral Thesis, Luleå University of Technology, Sweden

    Google Scholar 

  • Bert C, Metheaney KG, Doppke K et al (2005) A phantom evaluation of a stereo-vision surface imaging system for radiotherapy patient setup. Med Phys 32(9):2753–2762

    Article  PubMed  Google Scholar 

  • Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. Pattern Anal Mach 14(2):239–256

    Article  Google Scholar 

  • Brahme A, Nyman P, Skatt B (2008) 4D laser camera for accurate patient positioning, collision avoidance, image fusion and adaptive approaches during diagnostic and therapeutic procedures. Med Phys 35(5):1670–1681. doi:10.1118/1.2889720

    Article  PubMed  Google Scholar 

  • Büttgen B, Seitz P (2008) Robust optical time-of-flight range imaging based on smart pixel structures. IEEE Trans Circuits Syst Regul Pap 55(6):1512–1525. doi:10.1109/TCSI.2008.916679

    Article  Google Scholar 

  • Colombo A, Cusano C, Schettini R (2006) 3D face detection using curvature analysis. Pattern Recogn 39(3):444–455. doi: 10.1016/j.patcog.2005.09.009

  • Cox MG (1972) The numerical evaluation of B-splines. IMA J Appl Math 10(2):134–149. doi:10.1093/imamat/10.2.134

    Article  Google Scholar 

  • de Boor C (1972) On calculation with B-splines. J Approx Theory 6:50–62

    Article  Google Scholar 

  • Fitzpatrick J, West J, Maurer C Jr (1998) Predicting error in rigid-body point based registration. IEEE Trans Med Imaging 17:694–702

    Article  CAS  PubMed  Google Scholar 

  • Koenderink JJ, van Doorn AJ (1992) Surface shape and curvature scales. Image Vis Comput 10(8):557–565. doi:10.1016/0262-8856(92)90076-F

    Article  Google Scholar 

  • Meeks SL, Tomé WA, Willoughby TR et al (2005) Optically guided patient positioning techniques. Semin Radiat Oncol 15:192–201. doi:10.1016/j.semradonc.2005.01.004

    Article  PubMed  Google Scholar 

  • Pallotta S, Simontacchi G, Marrazzo L et al (2013) Accuracy of a 3D laser/camera surface imaging system for setup verification of the pelvic and thoracic regions in radiotherapy treatments. Med Phys 40(1):011710-1–011710-8

    Google Scholar 

  • Piegl L, Tiller W (1997) The NURBS book, 2nd edn. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Placht S, Stancanello J, Schaller C et al (2012) Fast time-of-flight camera based surface registration for radiotherapy patient positioning. Med Phys 39(1):4–17

    Article  PubMed  Google Scholar 

  • Pressley A (2010) Elementary differential geometry, 2nd edn. Springer, London

    Book  Google Scholar 

  • Soufi M, Arimura H, Nakamura K et al (2016) Feasibility of differential geometry-based features in detection of anatomical feature points on patient surfaces in range image-guided radiation therapy. Int J Comput Assist Radiol Surg 11:1993. doi:10.1007/s11548-016-1436-x

    Article  PubMed  Google Scholar 

  • Timmerman RD, Xing L (2009) Image-guided and adaptive radiation therapy. Wolters Kluwer, London

    Google Scholar 

  • Wagner TH, Meeks SL, Bova FJ et al (2007) Optical tracking technology in stereotactic radiation therapy. Med Dosim 32:111–120. doi:10.1016/j.meddos.2007.01.008

    Article  PubMed  Google Scholar 

  • Wang LT, Solberg TD, Medin PM et al (2001) Infrared patient positioning for stereotactic radiosurgery of extracranial tumors. Comput Biol Med 31(2):101–111. doi:10.1016/S0010-4825(00)00026-3

    Article  CAS  PubMed  Google Scholar 

  • Willoughby T, Lehmann J, Bencomo J et al (2012) Quality assurance for nonradiographic radiotherapy localization and positioning systems: report of Task Group 147. Med Phys 39(4):1728–1747. doi:10.1118/1.3681967

    Article  PubMed  Google Scholar 

  • Yoshitake T, Nakamura K, Shioyama Y et al (2008) Breath-hold monitoring and visual feedback for radiotherapy using a charge-coupled device camera and a head-mounted display: system development and feasibility. Radiat Med 26:50–55. doi:10.1007/s11604-007-0189-4

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazen Soufi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Soufi, M., Arimura, H. (2017). Surface-Imaging-Based Patient Positioning in Radiation Therapy. In: Arimura, H. (eds) Image-Based Computer-Assisted Radiation Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-10-2945-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2945-5_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2943-1

  • Online ISBN: 978-981-10-2945-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics