Skip to main content

Part of the book series: Undergraduate Lecture Notes in Physics ((ULNP))

  • 2101 Accesses

Abstract

Accretion is a general phenomenon in the interaction of astrophysical objects with their environment. Accretion onto white dwarfs, neutron stars and black holes in particular may give rise to multi-wavelength continuous and transient emission. The most extreme accretion scenarios are envisioned following birth of compact objects in core-collapse of massive stars. Accretion is a complex process of mass flow. Quite generally, in fall of angular momentum rich matter gives rise to disks. Accretion may continue provided angular momentum diffuses outwards, perhaps by a combination of turbulent viscosity and outflows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the classical limit, ingoring evaporation. Black holes evaporate by photon emission one-by-one that, in preserving unitarity, involves an astronomical amount of computation [6]. Subject to the Margolus-Levitin bound on quantum computation (1998, Physica D, 120, 88), this process is slow, one photon every few thousand light crossing time scales [7].

  2. 2.

    Historically, this problem was treated before Bondi’s spherical accretion.

References

  1. Bondi, H., 1952, MNRAS, 112, 195; Shapiro, S.L., & Teukolsky, S.A., 1983, Black Holes, White Dwarfs and Neutron Stars (John Wiley & Sons); Ryden, B.S., Lecture notes AST825, http://www.astronomy.ohio-state.edu/~ryden/ast825/ch8.pdf

  2. Hoyle, F. & Lyttleton, R. A.: 1939, Proc. Cam. Phil. Soc. 35, 405; Bondi, H. & Hoyle, F., 1944, MNRAS, 104, 273

    Google Scholar 

  3. Shakura, N.I., & Sunyaev, R.A., 1973, A&A, 24, 337.

    Google Scholar 

  4. Balbus, S.A., & Hawley, J.F., 1991, ApJ, 376, 214; Hawley, J.F., & Balbus, S.A., 1991, ApJ, 376, 223.

    Google Scholar 

  5. Montgomery, C., Orchistron, W., & Whittingham, I., 2009, J. Astron. History and Heritage, 12, 90.

    Google Scholar 

  6. van Putten, M.H.P.M., 2015, arXiv:1506.08075

  7. Bekenstein, J.D., & Mukhanov, V.F., 1995, Phys. Lett. B, 360, 7

    Google Scholar 

  8. Aharonian, F., Akhperjanian, A.G., Bazer-Bachi, A.R., et al., 2007, ApJ, 664, L71.

    Google Scholar 

  9. Abbott, B.P., et al., 2016, Phys. Rev., Lett., 116, 061102.

    Google Scholar 

  10. Russel A. Hulse and Joseph H. Taylor received the Nobel Prize in Physics, 1993, for their discovery; Weisberg, J. M., & Taylor, H., in Radio Pulsars, eds. M. Bailes, D. J. Nice & S. E. Thorsett, San Francisco: APS 2003 (Conf. Series CS 302), p. 93.

    Google Scholar 

  11. Ciufolini, I., & Pavlis, E.C., 2004, Nature, 431, 958; Everitt, C.W.F., et al., 2011, Phys. Rev. Lett., 106, 221101.

    Google Scholar 

  12. Hunt, R., 1971, MNRAS, 154, 141

    Google Scholar 

  13. Levinson, A., van Putten, M.H.P.M., Guy, P., 2015, 812, 124.

    Google Scholar 

  14. Peters, P. C., & Mathews, J., 1963, Phys. Rev., 131, 435.

    Google Scholar 

  15. van Putten, M.H.P.M., & Della Valle, M., 2016, MNRAS, 464, 3219.

    Google Scholar 

  16. van Putten, M.H.P.M., & Levinson, A., 2012, Relativistic Astrophysics of the Transient Universe (Cambridge: Cambridge University Press).

    Google Scholar 

  17. Paczynński, B., 1967, Acta Astron., 17, 287

    Google Scholar 

  18. Eggleton, P.P., 1983, ApJ, 268, 368; Benacquista, M., 2013, An Introduction to the Evolution of Single and Binary Stars (Springer-Verlag)

    Google Scholar 

  19. Hjellming, M. S. & Webbink, R.F. 1987, ApJ, 318, 794; Soberman, G.E., Phinney, E.S., & van den Heuvel, E.P.J. 1997, A&A, 327, 620

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice H.P.M. van Putten .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

van Putten, M.H. (2017). Accretion Flows onto Black Holes. In: Introduction to Methods of Approximation in Physics and Astronomy. Undergraduate Lecture Notes in Physics. Springer, Singapore. https://doi.org/10.1007/978-981-10-2932-5_11

Download citation

Publish with us

Policies and ethics