Skip to main content

Assessment of Antioxidant Potential of Plants in Response to Heavy Metals

  • Chapter
  • First Online:
Plant Responses to Xenobiotics

Abstract

Heavy metals (HMs) are consequential environmental contaminant, and their prodigious bioaccumulation in the surroundings has become an enigma for all living organisms including plants. Heavy metal has the potential to react with various indispensable cellular components like DNA, protein, and enzymes and in turn induce several stress responses in plants like oxidative stress which is the root cause for the progression of cell death in the plant. Stress responses inflicted by oxidative stress include severe morphological, metabolic, and physiological amendments in plants like DNA strand breakage, defragmentation of proteins, and damage of photosynthetic pigment, which may stimulate cell death. In reaction, plants have a range of mechanisms to minimize the heavy metal toxicity. Plants are endowed with antioxidant defense mechanism, which can be divided into two groups such as enzymatic antioxidants and nonenzymatic antioxidants, for instance, SOD, CAT, APX, GPX, GR and AsA, GSH, carotenoids, alkaloids, tocopherols, proline, and phenolic compounds, respectively, that together act as the scavengers for free radicals to mitigate the damaging impacts of heavy metal agglomeration in the cells. These antioxidant potentials could be assessed by different in vivo and in vitro methods such as hydrogen atom transfer and electron transfer through which we can evaluate the ROS detrimental action of antioxidant enzymes. Therefore, the present chapter attempts to provide the contemporary knowledge regarding the metal-influenced antioxidant status in plants and also provides the precise pathway that should follow for the future research in the area of antioxidant potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeysinghe DC, Wijerathne SMNK, Dharmadasa RM (2014) Secondary metabolites contents and antioxidant capacities of acmella oleraceae grown under different growing systems. World J Agric Res 2(4):163–167

    Article  Google Scholar 

  • Agrawal SB, Mishra S (2009) Effects of supplemental ultraviolet-B and cadmium on growth, antioxidants and yield of Pisum sativum L. Ecotoxicol Environ Safe 72:610–618

    Article  CAS  Google Scholar 

  • Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10:594–602

    Article  CAS  PubMed  Google Scholar 

  • Ahmad I, Hamid T, Fatima M, Chand HS, Jain SK, Athar M, Raisuddin S (2000) Induction of hepatic antioxidants in freshwater catfish (Channa punctatus Bloch) is a biomarker of paper mill effluent exposure. Biochim Biophys Acta Gen Subj 1523:37–48

    Article  CAS  Google Scholar 

  • Ahmad P, Azooz MM, Prasad MNV (eds) (2012) Ecophysiology and responses of plants under salt stress. Springer Science & Business Media

    Google Scholar 

  • Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat Protoc 2:875–877

    Article  CAS  PubMed  Google Scholar 

  • Alam MN, Bristi NJ, Rafiquzzaman M (2013) Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J 21:143–152

    Article  PubMed  Google Scholar 

  • Ali AA, Alqurainy F (2006) Activities of antioxidants in plants under environmental stress. The lutein-prevention and treatment for diseases. In: Motohashi N (ed) The lutein prevention and treatment for disease. Kerala, Transworld Research Network, pp 187–256

    Google Scholar 

  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant 100:224–233

    Article  CAS  Google Scholar 

  • Andrianos V, Stoikou V, Tsikrika K, Lamprou D, Stasinos S, Proestos C, Zabetakis I (2016) Carotenoids and antioxidant enzymes as biomarkers of the impact of heavy metals in food chain. Curr Res Nutr Food Sci 4:15–24

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arruti A, Fernández-Olmo I, Irabien Á (2010) Evaluation of the contribution of local sources to trace metals levels in urban PM2. 5 and PM10 in the Cantabria region (Northern Spain). J Environ Monit 12:1451–1458

    Article  CAS  PubMed  Google Scholar 

  • Asada K (2000) The water–water cycle as alternative photon and electron sinks. Philos Trans R Soc Lond B Biol Sci 355:1419–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badarinath AV, Rao KM, Chetty CMS, Ramkanth S, Rajan TVS, Gnanaprakash K (2010) A review on in-vitro antioxidant methods: comparisons, correlations and considerations. Int J PharmTech Res 2:1276–1285

    CAS  Google Scholar 

  • Baier M, Dietz KJ (2005) Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology. J Exp Bot 56:1449–1462

    Article  CAS  PubMed  Google Scholar 

  • Bansal M, Kaushal N (2014) Oxidative stress mechanisms and their modulation. Springer, New Delhi

    Book  Google Scholar 

  • Baratta MT, Dorman HJ, Deans SG, Figueiredo AC, Barroso JG, Ruberto G (1998) Antimicrobial and antioxidant properties of some commercial essential oils. Flavour Frag J 13:235–244

    Article  CAS  Google Scholar 

  • Begović L, Mlinarić S, Dunić JA, Katanić Z, Lončarić Z, Lepeduš H, Cesar V (2016) Response of Lemna minor L. to short-term cobalt exposure: the effect on photosynthetic electron transport chain and induction of oxidative damage. Aquat Toxicol 175:117–126

    Article  PubMed  CAS  Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (eds) (2009) Carotenoids volume 5: nutrition and health (Vol. 5) SSBM

    Google Scholar 

  • Cannon RE, White JA, Scandalios JG (1987) Cloning of cDNA for maize superoxide dismutase 2 (SOD2). Proc Nalt Acad Sci 84:179–183

    Article  CAS  Google Scholar 

  • Campos C, Guzmán R, López-Fernández E, Casado Á (2009) Evaluation of the copper (II) reduction assay using bathocuproinedisulfonic acid disodium salt for the total antioxidant capacity assessment: The CUPRAC–BCS assay. Anal Biochem 392(1):37–44

    Article  CAS  PubMed  Google Scholar 

  • Caregnato FF, Koller CE, MacFarlane GR, Moreira JC (2008) The glutathione antioxidant system as a biomarker suite for the assessment of heavy metal exposure and effect in the grey mangrove, Avicennia marina (Forsk.) Vierh. Mar Pollut Bull 56:1119–1127

    Article  CAS  PubMed  Google Scholar 

  • Cargnelutti D, Tabaldi LA, Spanevello RM, de Oliveira JG, Battisti V, Redin M, Morsch VM (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65:999–1006

    Article  CAS  PubMed  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Çekiç SD, Avan AN, Uzunboy S, Apak R (2015) A colourimetric sensor for the simultaneous determination of oxidative status and antioxidant activity on the same membrane: N, N-Dimethyl-p-phenylene diamine (DMPD) on Nafion. Anal Chim Acta 865:60–70

    Article  PubMed  CAS  Google Scholar 

  • Cheeseman JM (2006) Hydrogen peroxide concentrations in leaves under natural conditions. J Exp Bot 57:2435–2444

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Gallie DR (2006) Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol 142:775–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chugh V, Kaur N, Gupta AK (2011) Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought. Indian J Biochem Biophys 48:47–53

    CAS  PubMed  Google Scholar 

  • Collin VC, Eymery F, Genty B, Rey P, Havaux M (2008) Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal induced oxidative stress. Plant Cell Environ 31:244–257

    CAS  PubMed  Google Scholar 

  • Dai HP, Shan CJ, Zhao H, Li JC, Jia GL, Jiang H, Wang Q (2015) The difference in antioxidant capacity of four alfalfa cultivars in response to Zn. Ecotoxicol Environ Safe 114:312–317

    Article  CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Ding S, Lei M, Lu Q, Zhang A, Yin Y, Wen X, Lu C (2012) Enhanced sensitivity and characterization of photosystem II in transgenic tobacco plants with decreased chloroplast glutathione reductase under chilling stress. BBA Bioenerg 1817:1979–1991

    Article  CAS  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Mishra S, Dwivedi S, Kumar S, Tripathi RD (2016) Reduced arsenic accumulation in rice (Oryza sativaL.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiol Biochem 99:86–96

    Google Scholar 

  • Drążkiewicz M, Skórzyńska-Polit E, Krupa Z (2004) Copper-induced oxidative stress and antioxidant defence in Arabidopsis thaliana. Biometals 17:379–387

    Article  PubMed  Google Scholar 

  • Duman F, Ozturk F (2010) Nickel accumulation and its effect on biomass, protein content and antioxidative enzymes in roots and leaves of watercress (Nasturtium officinale R. Br.). J Environ Sci 22:526–532

    Article  CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    Article  CAS  PubMed  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015 Article ID 756120: 18

    Google Scholar 

  • Eshagberi GO (2012) Toxic effects of heavy metal on crop plants. Multidiscip J Emp Res 10:1–10

    Google Scholar 

  • Fariduddin Q, Yusuf M, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environ Exp Bot 66:418–424

    Google Scholar 

  • Fatima RA, Ahmad M (2005) Certain antioxidant enzymes of Allium cepaas biomarkers for the detection of toxic heavy metals in wastewater. Sci Total Environ 346:256–273

    Google Scholar 

  • FAO (2009) Press release, 19 June 2009. http://www.fao.org/news/story/en/item/20568/icode/

  • Fernández LG, Fernández-Pascual M, Mañero FJG, García JAL (2015) Phytoremediation of contaminated waters to improve water quality. In: Phytoremediation. Springer International Publishing, pp 11–26

    Google Scholar 

  • Ferrat L, Pergent-Martini C, Roméo M (2003) Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: application to seagrasses. Aquat Toxicol 65:187–204

    Article  CAS  PubMed  Google Scholar 

  • Filippenko V, Frenette M, Scaiano JC (2009) Solvent-independent antioxidant activity from thermally generated carbon-centered radical antioxidants. Org Lett 11:3634–3637

    Article  CAS  PubMed  Google Scholar 

  • Fini A, Brunetti C, Di Ferdinando M, Ferrini F, Tattini M (2011) Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal Behav 6:709–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flora SJ (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid Med Cell Longev 2:191–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritioff Å, Greger M (2003) Aquatic and terrestrial plant species with potential to remove heavy metals from stormwater. Int J Phytorem 5:211–224

    Article  CAS  Google Scholar 

  • Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J 33:691–705

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Khan NA, Anjum NA, Tuteja N (2011) Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects. Plant Stress 5:1–23

    Google Scholar 

  • Gliszczyńska-Świgło A (2006) Antioxidant activity of water soluble vitamins in the TEAC (trolox equivalent antioxidant capacity) and the FRAP (ferric reducing antioxidant power) assays. Food Chem 96:131–136

    Article  CAS  Google Scholar 

  • Gout E, Boisson AM, Aubert S, Douce R, Bligny R (2001) Origin of the cytoplasmic pH changes during anaerobic stress in higher plant cells. Carbon-13 and phosphorous-31 nuclear magnetic resonance studies. Plant Physiol 125:912–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grassmann J, Hippeli S, Elstner EF (2002) Plant’s defence and its benefits for animals and medicine: role of phenolics and terpenoids in avoiding oxygen stress. Plant Physiol Biochem 40:471–478

    Article  CAS  Google Scholar 

  • Gutteridge J, Halliwell B (2000) Free radicals and antioxidants in the year 2000: a historical look to the future. Ann N Y Acad Sci 899:136–147

    Article  CAS  PubMed  Google Scholar 

  • Hajar EWI, Sulaiman AZB, Sakinah AM (2014) Assessment of heavy metals tolerance in leaves, stems and flowers of Stevia rebaudiana plant. Proc Environ Sci 20:386–393

    Article  CAS  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  • Han D, Xiong S, Tu S, Liu J, Chen C (2015) Interactive effects of selenium and arsenic on growth, antioxidant system, arsenic and selenium species of Nicotiana tabacum L. Environ Exp Bot 117:12–19

    Article  CAS  Google Scholar 

  • Hartmann A, Nieβ AM, Grünert-Fuchs M, Poch B, Speit G (1995) Vitamin E prevents exercise-induced DNA damage. Mut Res Lett 346:195–202

    Article  CAS  Google Scholar 

  • Haytowitz DB, Bhagwat S (2010) USDA database for the oxygen radical absorbance capacity (ORAC) of selected foods, Release 2. US Department of Agriculture

    Google Scholar 

  • He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    Article  CAS  PubMed  Google Scholar 

  • Hernández I, Alegre L, Van Breusegem F, Munné-Bosch S (2009) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14:125–132

    Article  PubMed  CAS  Google Scholar 

  • Iannone MF, Groppa MD, Benavides MP (2015) Cadmium induces different biochemical responses in wild type and catalase-deficient tobacco plants. Environ Exp Bot 109:201–211

    Article  CAS  Google Scholar 

  • Igamberdiev AU, Mikkelsen TN, Ambus P, Bauwe H, Lea PJ, Gardeström P (2004) Photorespiration contributes to stomatal regulation and carbon isotope fractionation: a study with barley, potato and Arabidopsis plants deficient in glycine decarboxylase. Photosynth Res 81:139–152

    Article  CAS  Google Scholar 

  • Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 755

    Google Scholar 

  • Islam F, Yasmeen T, Riaz M, Arif MS, Ali S, Raza SH (2014) Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants. Ecotoxical Environ Safe 110:143–152

    Article  CAS  Google Scholar 

  • Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere 65:591–598

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Jayakumar K, Chang-Xing Z, Azooz MM (2009) Antioxidant potentials protect Vigna radiata (L.) Wilczek plants from soil cobalt stress and improve growth and pigment composition. Plant Omics 2:120

    Google Scholar 

  • Jayakumar K, Vijayarengan P, Changxing Z, Gomathinayagam M, Jaleel CA (2008) Soil applied cobalt alters the nodulation, leg-haemoglobin content and antioxidant status of glycine max (L.). Merr Collid Surf B 67:272–275

    Article  CAS  Google Scholar 

  • Johnston JW, Dussert S, Gale S, Nadarajan J, Harding K, Benson EE (2006) Optimisation of the azinobis-3-ethyl-benzothiazoline-6-sulphonic acid radical scavenging assay for physiological studies of total antioxidant activity in woody plant germplasm. Plant Physiol Biochem 44:193–201

    Article  CAS  PubMed  Google Scholar 

  • Kabata A, Pendias H (2001) Trace elements in soils and plants. CRC, Washington

    Google Scholar 

  • Kabata-Pendias A (2004) Soil–plant transfer of trace elements—an environmental issue. Geoderma 122:143–149

    Article  CAS  Google Scholar 

  • Kafel A, Nadgórska-Socha A, Gospodarek J, Babczyńska A, Skowronek M, Kandziora M, Rozpędek K (2010) The effects of Aphis fabae infestation on the antioxidant response and heavy metal content in field grown Philadelphus coronarius plants. Sci Total Environ 408:1111–1119

    Article  CAS  PubMed  Google Scholar 

  • Kähkönen MP, Heinonen M (2003) Antioxidant activity of anthocyanins and their aglycons. J Agric Food Chem 51:628–633

    Article  PubMed  CAS  Google Scholar 

  • Karadag A, Ozcelik B, Saner S (2009) Review of methods to determine antioxidant capacities. Food Anal Method 2:41–60

    Article  Google Scholar 

  • Karuppanapandian T, Manoharan K (2008) Uptake and translocation of tri- and hexa-valent chromium and their effects on black gram (Vigna mungo L. Hepper cv. Co4) roots. J Plant Biol 51:192–201

    Article  CAS  Google Scholar 

  • Karuppanapandian T, Sinha PB, Haniya AMK, Mamoharan K (2006) Differential antioxidative responses of ascorbate-glutathione cycle enzymes and metabolites to chromium stress in green gram (Vigna radiata L. Wilczek) leaves. J Plant Biol 49:440–447

    Article  CAS  Google Scholar 

  • Karuppanapandian T, Moon JC, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 709

    Google Scholar 

  • Kasote DM, Katyare SS, Hegde MV, Bae H (2015) Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci 982

    Google Scholar 

  • Kazemi N, Khavari-Nejad RA, Fahimi H, Saadatmand S, Nejad-Sattari T (2010) Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Sci Hortic –Amsterdam 126:402–407

    Google Scholar 

  • Keilig K, Ludwig-Müller J (2009) Effect of flavonoids on heavy metal tolerance in Arabidopsis thaliana seedlings. Bot Stud 50:311–318

    CAS  Google Scholar 

  • Khatun S, Ali MB, Hahn EJ, Paek KY (2008) Copper toxicity in Withania somnifera: growth and antioxidant enzymes responses of in vitro grown plants. Environ Exp Bot 64:279–285

    Article  CAS  Google Scholar 

  • Kiffin R, Bandyopadhyay U, Cuervo AM (2006) Oxidative stress and autophagy. Antioxid Redox Signal 8:152–162

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Osbourn A (2012) Making new molecules–evolution of pathways for novel metabolites in plants. Curr Opin Plant Biol 15:415–423

    Article  CAS  PubMed  Google Scholar 

  • Koji Y, Shiro M, Michio K, Mitsutaka T, Hiroshi M (2009) Antioxidant capacity and damages caused by salinity stress in apical and basal regions of rice leaf. Plant Prod Sci 12:319–326

    Article  Google Scholar 

  • Korkina LG (2007) Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol 53:15–25

    CAS  PubMed  Google Scholar 

  • Kotapati KV, Palaka BK, Kandukuri A, Reddy R (2014) Response of antioxidative enzymes and lipoxygenase to drought stress in finger millet leaves (Eleusine Coracana (L.) Gaertn)

    Google Scholar 

  • Krishnaiah D, Sarbatly R, Nithyanandam R (2011) A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 89:217–233

    Article  CAS  Google Scholar 

  • Kuiper C, Vissers MC (2013) Ascorbate as a co-factor for Fe-and 2-oxoglutarate dependent dioxygenases: physiological activity in tumor growth and progression. Front Oncol 4:359–359

    Google Scholar 

  • Kumar JN, Soni H, Kumar RN, Bhatt I (2008) Assessing heavy metal hyper-accumulation and mobility in selected vegetable crops: a case study of organic farm, Gujarat, India. Nat Environ Pollut Technol 7(2):203–210

    CAS  Google Scholar 

  • Kumar RR, Goswami S, SinghK GK, Rai GK, Rai RD (2013) Modulation of redox signal transduction in plant system through induction of free radical/ROS scavenging redox-sensitive enzymes and metabolites. Aust J Crop Sci 1744

    Google Scholar 

  • Kusvuran S (2012) Influence of drought stress on growth, ion accumulation and antioxidative enzymes in okra genotypes. Int J Agric Biol 14:401–406

    CAS  Google Scholar 

  • Kuźniak E, Głowacki R, Chwatko G, Kopczewski T, Wielanek M, Gajewska E, Skłodowska M (2014) Involvement of ascorbate, glutathione, protein S-thiolation and salicylic acid in benzothiadiazole-inducible defence response of cucumber against Pseudomonas syringae pv lachrymans. Physiol Mol Plant 86:89–97

    Article  CAS  Google Scholar 

  • Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Sub Res 2:1–25

    Google Scholar 

  • Lenntech Water Treatment and Air Purification (2004) Water treatment. Lenntech, Rotterdamseweg, Netherlands (http://www.excelwater.com/thp/filters/Water-Purification.htm)

  • Leterrier M, Corpas FJ, Barroso JB, Sandalio LM, Luis A (2005) Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions. Plant Physiol 138:2111–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Keasling JD, Niyogi KK (2012) Overlapping photoprotective function of vitamin E and carotenoids in Chlamydomonas. Plant Physiol 158:313–323

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yang Y, Jia L, Chen H, Wei X (2013) Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol Environ Saf 89:150–157

    Article  CAS  PubMed  Google Scholar 

  • Lomonte C, Sgherri C, Baker AJ, Kolev SD, Navari-Izzo F (2010) Antioxidative response of Atriplex codonocarpa to mercury. Environ Exp Bot 69:9–16

    Article  CAS  Google Scholar 

  • Lopez‐Huertas E, Charlton WL, Johnson B, Graham IA, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19:6770–6777

    Article  PubMed  PubMed Central  Google Scholar 

  • Løvdal T, Olsen KM, Slimestad R, Verheul M, Lillo C (2010) Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry 71:605–613

    Article  PubMed  CAS  Google Scholar 

  • Malar S, Vikram SS, Favas PJ, Perumal V (2014) Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud 54

    Google Scholar 

  • Malik JA, Goel S, Kaur N, Sharma S, Singh I, Nayyar H (2012) Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ Exp Bot 77:242–248

    Article  CAS  Google Scholar 

  • Mangabeira PA, Gavrilov KL, De Almeida AAF, Oliveira AH, Severo MI, Rosa TS, Mielke MS (2006) Chromium localization in plant tissues of Lycopersicum esculentum Mill using ICP-MS and ion microscopy (SIMS). Appl Surf Sci 252:3488–3501

    Article  CAS  Google Scholar 

  • Mazid M, Khan TA, Mohammad F (2011) Role of secondary metabolites in defense mechanisms of plants. Biol Med 3:232–249

    CAS  Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

    CAS  PubMed  Google Scholar 

  • Minkov IN, Jahoubjan GT, Denev ID, Toneva VT (1999) Photooxidative stress in higher plants. Handb Plant Crop Stress 2:499–525

    Google Scholar 

  • Mithöfer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. Febs Lett 566:1–5

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  CAS  PubMed  Google Scholar 

  • Myburgh KH (2014) Polyphenol supplementation: benefits for exercise performance or oxidative stress? Sports Med 44:57–70

    Article  PubMed Central  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol Environ Safe 126:245–255

    Article  CAS  Google Scholar 

  • Namdjoyan S, Kermanian H (2013) Exogenous nitric oxide (as sodium nitroprusside) ameliorates arsenic-induced oxidative stress in watercress (Nasturtium officinale R. Br.) plants. Sci Hortic-Amsterdam 350–356

    Google Scholar 

  • Noctor G, Foyer CH (1998) Simultaneous measurement of foliar glutathione, γ-glutamylcysteine, and amino acids by high-performance liquid chromatography: comparison with two other assay methods for glutathione. Anal Biochem 264:98–110

    Article  CAS  PubMed  Google Scholar 

  • Nowicka B, Pluciński B, Kuczyńska P, Kruk J (2016) Prenyllipid antioxidants participate in response to acute stress induced by heavy metals in green microalga Chlamydomonas reinhardtii. Environ Exp Bot 123:98–107

    Article  CAS  Google Scholar 

  • Ordoudi SA, Tsimidou MZ (2006) Crocin bleaching assay step by step: observations and suggestions for an alternative validated protocol. J Agric Food Chem 54:1663–1671

    Article  CAS  PubMed  Google Scholar 

  • Ou B, Huang D, Hampsch-Woodill M, Flanagan JA, Deemer EK (2002) Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agric Food Chem 50:3122–3128

    Article  CAS  PubMed  Google Scholar 

  • Ozgen M, Reese RN, Tulio AZ, Scheerens JC, Miller AR (2006) Modified 2, 2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2, 2′-diphenyl-1-picrylhydrazyl (DPPH) methods. J Agric Food Chem 54:1151–1157

    Article  CAS  PubMed  Google Scholar 

  • Padh H (1990) Cellular functions of ascorbic acid. Biochem Cell Biol 68:1166–1173

    Article  CAS  PubMed  Google Scholar 

  • Palozza P, Krinsky NI (1992) β-Carotene and α-tocopherol are synergistic antioxidants. Arch Biochem Biophys 297:184–187

    Article  CAS  PubMed  Google Scholar 

  • Parlak KU (2016) Effect of nickel on growth and biochemical characteristics of wheat (Triticum aestivum L.) seedlings. NJAS-Wagen J Life Sci 76:1–5

    Article  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants-a review. Plant Soil Environ 54(3):89–99

    CAS  Google Scholar 

  • Peijnenburg WJGM, Jager T (2003) Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotoxicol Environ Safe 56:63–77

    Article  CAS  Google Scholar 

  • Phang C, Leung DW, Taylor HH, Burritt DJ (2011) The protective effect of sodium nitroprusside (SNP) treatment on Arabidopsis thalianaseedlings exposed to toxic level of Pb is not linked to avoidance of Pb uptake. Ecotoxicol Environ Safe 74:1310–1315

    Google Scholar 

  • Pinto E, Sigaud-kutner T, Leitao MA, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal–induced oxidative stress in algae1. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Posmyk MM, Kontek R, Janas KM (2009) Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicol Environ Safe 72:596–602

    Article  CAS  Google Scholar 

  • Prakash D, Sharma G (eds) (2014) Phytochemicals of nutraceutical importance. CABI

    Google Scholar 

  • Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  CAS  PubMed  Google Scholar 

  • Rabi T, Bishayee A (2009) Terpenoids and breast cancer chemoprevention. Breast Cancer Res Treat 115:223–239

    Article  CAS  PubMed  Google Scholar 

  • Ragavendran P, Sophia D, Arul Raj C, Starlin T, Gopalakrishnan VK (2012) Phytochemical screening, antioxidant activity of Aerva lanata (L)–an in vitro study. Asian J Pharm Clin Res 5:77–81

    Google Scholar 

  • Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 219

    Google Scholar 

  • Rao KM, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    Article  Google Scholar 

  • Regelsberger G, Atzenhofer W, Rüker F, Peschek GA, Jakopitsch C, Paumann M, Obinger C (2002) Biochemical characterization of a membrane-bound manganese-containing superoxide dismutase from the cyanobacterium Anabaena PCC 7120. J Biol Chem 277:43615–43622

    Article  CAS  PubMed  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodríguez-Serrano M, Del Río LA, Palma JM (2006) Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol 170:43–52

    Article  CAS  PubMed  Google Scholar 

  • Salido AL, Hasty KL, Lim JM, Butcher DJ (2003) Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int J Phytorem 5:89–103

    Article  CAS  Google Scholar 

  • Sánchez-Pardo B, Fernández-Pascual M, Zornoza P (2012) Copper microlocalisation, ultrastructural alterations and antioxidant responses in the nodules of white lupin and soybean plants grown under conditions of copper excess. Environ Exp Bot 84:52–60

    Article  CAS  Google Scholar 

  • Sbartai H, Djebar MR, Sbartai I, Berrabbah H (2012) Bioaccumulation of cadmium and zinc in tomato (Lycopersicon esculentum L.). C R Biol 335:585–593

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Panaccione DG, Tudzynski P (2006) Ergot alkaloids–biology and molecular biology. Alkaloids Chem Boil 63:45–86

    Article  CAS  Google Scholar 

  • Schrader M, Fahimi HD (2006) Peroxisomes and oxidative stress. Biochim Biophys Acta Mol Cell Res 1763:1755–1766

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Shahid M, Pinelli E, Pourrut B, Dumat C (2014) Effect of organic ligands on lead-induced oxidative damage and enhanced antioxidant defense in the leaves of Vicia faba plants. J Geochem Explor 144:282–289

    Article  CAS  Google Scholar 

  • Shalaby E, Shanab S (2013) Antioxidant compounds, assays of determination and mode of action. Afr J Pharm Pharmacol 7:528–539

    Article  CAS  Google Scholar 

  • Shamsi IH, Wei K, Zhang GP, Jilani GH, Hassan MJ (2008) Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean. Biol Plant 52:165–169

    Article  CAS  Google Scholar 

  • Shanker AK, Djanaguiraman M, Sudhagar R, Chandrashekar CN, Pathmanabhan G (2004) Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R. Wilczek. cv CO 4) roots. Plant Sci 166:1035–1043

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012: Article ID 217037, 26 pages

    Google Scholar 

  • Sharma P, Kumar A, Bhardwaj R (2016) Plant steroidal hormone epibrassinolide regulate–Heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ Exp Bot 1–9

    Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  CAS  PubMed  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    Article  CAS  PubMed  Google Scholar 

  • Sies H (2007) Total antioxidant capacity: appraisal of a concept. J Nutr 137:1493–1495

    CAS  PubMed  Google Scholar 

  • Sinha RK, Herat S, Tandon PK (2007) Phytoremediation: role of plants in contaminated site management. In: Environmental Bioremediation Technologies, pp 315–330

    Google Scholar 

  • Singh S, Srivastava PK, Kumar D, Tripathi DK, Chauhan DK, Prasad SM (2015) Morpho-anatomical and biochemical adapting strategies of maize (Zea mays L.) seedlings against lead and chromium stresses. Biocatal Agric Biotechnol 4(3):286–295

    Google Scholar 

  • Smirnoff N (2005) Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. Antioxidants and Reactive Oxygen Species in Plants 53–86

    Google Scholar 

  • Srivastava NK, Srivastava AK (2010) Influence of some heavy metals on growth, alkaloid content and composition in Catharanthus roseus L. Indian J Pharm Sci 775

    Google Scholar 

  • Sun RL, Zhou QX, Sun FH, Jin CX (2007) Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ Exp Bot 60:468–476

    Article  CAS  Google Scholar 

  • Takeda T, Yoshimura K, Ishikawa T, Shigeoka S (1998) Purification and characterization of ascorbate peroxidase in Chlorella vulgaris. Biochimie 80:295–301

    Article  CAS  PubMed  Google Scholar 

  • Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011: Article ID 939161, 31 pages

    Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Molecular, clinical and environmental toxicology, pp 133–164 EXS. 101:133–164

    Google Scholar 

  • Traber MG, Stevens JF (2011) Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med 51(5):1000–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    Article  CAS  PubMed  Google Scholar 

  • Tripathi A, Tripathi DK, Chauhan DK, Kumar N (2016) Chromium (VI)-induced phytotoxicity in river catchment agriculture: evidence from physiological, biochemical and anatomical alterations in Cucumis sativus (L.) used as model species. Chem Ecol 32(1):12–33

    Article  CAS  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7:1621–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vellosillo T, Vicente J, Kulasekaran S, Hamberg M, Castresana C (2010) Emerging complexity in reactive oxygen species production and signaling during the response of plants to pathogens. Plant Physiol 154:444–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Viehweger K (2014) How plants cope with heavy metals. Bot Stud 35

    Google Scholar 

  • Vitória AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57:701–710

    Article  PubMed  Google Scholar 

  • Wang X, Quinn PJ (2000) The location and function of vitamin E in membranes (Review). Mol Membr Biol 17:143–156

    Article  PubMed  Google Scholar 

  • Weihong XU, Wenyi LI, Jianping HE, Singh B, Xiong Z (2009) Effects of insoluble Zn, Cd, and EDTA on the growth, activities of antioxidant enzymes and uptake of Zn and Cd in Vetiveria zizanioides. J Environ Sci 21:186–192

    Article  CAS  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Yoon HS, Lee H, Lee IA, Kim KY, Jo J (2004) Molecular cloning of the monodehydroascorbate reductase gene from Brassica campestris and analysis of its mRNA level in response to oxidative stress. BBA Bioenerg 1658:181–186

    Article  CAS  Google Scholar 

  • Young AJ, Lowe GM (2001) Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 385:20–27

    Article  CAS  PubMed  Google Scholar 

  • Yusuf M, Khan TA, Fariduddin Q (2016) Interaction of epibrassinolide and selenium ameliorates the excess copper inBrassica juncea through altered proline metabolism and antioxidants. Ecotoxical Environ Safe 129:25–34

    Google Scholar 

  • Zamocky M, Furtmüller PG, Obinger C (2008) Evolution of catalases from bacteria to humans. Antioxid Redox Signal 10:1527–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zengin FK, Munzuroglu O (2005) Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biol Cracov Bot 47:157–164

    Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZS, Wang SJ, Yang ZM (2008) Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70:1500–1509

    Article  CAS  PubMed  Google Scholar 

  • Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–769

    Article  CAS  PubMed  Google Scholar 

  • Zitka O, Skalickova S, Gumulec J, Masarik M, Adam V, Hubalek J, Kizek R (2012) Redox status expressed as GSH: GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol Lett 4:1247–1253

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Arif, N. et al. (2016). Assessment of Antioxidant Potential of Plants in Response to Heavy Metals. In: Singh, A., Prasad, S., Singh, R. (eds) Plant Responses to Xenobiotics. Springer, Singapore. https://doi.org/10.1007/978-981-10-2860-1_5

Download citation

Publish with us

Policies and ethics