Skip to main content

Electrode Array for Neural Interfaces

  • Living reference work entry
  • First Online:
Micro Electro Mechanical Systems

Part of the book series: Micro/Nano Technologies ((MNT,volume 2))

  • 256 Accesses

Abstract

A neural interface is a kind of device or system which is used to connect neural system with external equipment, through recording electroneurographic (EEG) signals, a neural interface monitors or stimulates and regulates neural activities. To reduce as much as possible the interference of the device in neural system, neural interfaces are usually fabricated with MEMs technology, which helps to minimize the dimensions of neural interfaces. Apart from meeting the dimension requirements, neural interfaces should also be biocompatible in terms of biochemical characteristics, electrical properties, and mechanical properties. These requirements or limits mean more challenges upon neural interface materials and processing technologies. In this chapter, we will take implantable neural microelectrode array as an example, and introduce the development of existing microfabrication technology including working principle, material selection, structure, and manufacturing process of neural microelectrode device. At last, we will sum up the problems and challenges microelectrode devices are facing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barna JS, Arezzo JC, Vaughan HG Jr (1981) A new multielectrode array for the simultaneous recording of field potentials and unit activity. Electroencephalogr Clin Neurophysiol 52:5494–5496

    Article  Google Scholar 

  • Campbell PK, Jones KE, Huber RJ, Horch KW, Normann RA (1991) A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Biomed Eng 38(8):758–768

    Article  Google Scholar 

  • Chen Y, Pei W, Chen S et al (2013a) Poly(3,4-ethylenedioxythiophene) (PEDOT) as interface material for improving electrochemical performance of microneedles array-based dry electrode. Sensors Actuators B Chem 188(11):747–756

    Article  Google Scholar 

  • Chen S, Pei W, Gui Q et al (2013b) PEDOT/MWCNT composite film coated microelectrode arrays for neural interface improvement[J]. Sensors Actuators A Phys 193(15):141–148

    Article  Google Scholar 

  • Chen SY, Pei WH, Hui Z et al (2014) 32-site microelectrode modified with Pt black for neural recording fabricated with thin-film silicon membrane. Science China Inf Sci 57(5):1–7

    Google Scholar 

  • Fofonoff TA, Martel SM, Hatsopoulos NG et al (2004) Microelectrode array fabrication by electrical discharge machining and chemical etching. IEEE Trans Biomed Eng 51(6):890–895

    Article  Google Scholar 

  • Humayun M, de Juan E Jr, Weiland J et al (1999) Pattern electrical stimulation of the human retina. Vis Res 39:2569–2576

    Article  Google Scholar 

  • Jung Y, Kwak JH, Kang H, Kim WD, Hur S (2015) Mechanical and electrical characterization of piezoelectric artificial cochlear device and biocompatible packaging. Sensors (Basel) 15(8):18851–18864

    Article  Google Scholar 

  • Khodagholy D, Gelinas JN, Thesen T et al (2015) NeuroGrid: recording action potentials from the surface of the brain. Nat Neurosci 18(2):310–315

    Article  Google Scholar 

  • Kozai TDY, Langhals NB, Patel PR et al (2012) Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat Mater 11(12):1065–1073

    Article  Google Scholar 

  • Lopez CM, Mitra S, Putzeys J, et al (2016) 22.7 A 966-electrode neural probe with 384 configurable channels in 0.13 μm SOI CMOS. In: IEEE international solid-state circuits conference. IEEE, pp 392–393

    Google Scholar 

  • Luan L, Wei X, Zhao Z, Siege JJ, Potnis O et al (2017) Ultra-flexible nano-electronic probes form reliable, glial scar–free neural integration. Sci Adv 15:1–9

    Google Scholar 

  • Normann RA, Maynard EM, Rousche PJ, Warren DJ (1999) A neural interface for a cortical vision prosthesis. Vis Res 39:2577–2587

    Article  Google Scholar 

  • Pandarinath C et al (2017) High performance communication by people with paralysis using an intracortical brain-computer interface. elife 6

    Google Scholar 

  • Park S et al (2017) One-step optogenetics with multifunctional flexible polymer fibers. Nat Neurosci 20(4):612–617

    Article  Google Scholar 

  • Pei W, Zhang H, Wang Y et al (2017) Skin-potential variation insensitive dry electrodes for ECG recording. IEEE Trans Biomed Eng 64(2):463–470

    Article  Google Scholar 

  • Scholvin J, Kinney JP, Bernstein JG et al (2016) Close-packed silicon microelectrodes for scalable spatially oversampled neural recording. IEEE Trans Biomed Eng 63(1):120–130

    Google Scholar 

  • Takahashi H, Suzurikawa J, Nakao M et al (2005) Easy-to-prepare assembly array of tungsten microelectrodes. IEEE Trans Biomed Eng 52(5):952–956

    Article  Google Scholar 

  • Wise KD, Anderson DJ, Hetke JF et al (2004) Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc IEEE 92(1):76–97

    Article  Google Scholar 

  • Xiang Z, Yen SC, Xue N et al (2014) Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle. J Micromech Microeng 24(6):0650152

    Article  Google Scholar 

  • Yu W, WeiHua P, Kai G, Qiang G, XiaoQian L, HongDa C, JianHong Y (2011) Dry electrode for the measurement of biopotential signals. Science China Inf Sci 54(11):2435–2442

    Article  Google Scholar 

  • Zhang H, Pei W, Chen Y et al (2016) A motion interference-insensitive flexible dry electrode. IEEE Trans Biomed Eng 63(6):1136–1144

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Pei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Pei, W., Chen, H. (2017). Electrode Array for Neural Interfaces. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-2798-7_42-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2798-7_42-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2798-7

  • Online ISBN: 978-981-10-2798-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics