Skip to main content

RF MEMS Switch

  • Living reference work entry
  • First Online:
Micro Electro Mechanical Systems

Part of the book series: Micro/Nano Technologies ((MNT,volume 2))

Abstract

RF MEMS switch is a new type of RF component developed by MEMS technology. Like the macro switches and relays, RF MEMS switches use a mechanical way to control the signal on and off. The difference is that, RF MEMS switches have very small volume and are used to process RF or microwave signals. Compared with the traditional solid-state semiconductor RF switches, RF MEMS switches have the advantages of low insertion loss, high isolation, low power consumption, and high linearity. Hence, RF MEMS switches have a wide range of application prospects in many fields, such as radar, satellite, base station, and portable radio communication equipment.

In this chapter, the configuration principles of RF MEMS switches is first introduced, including four basic EM models and two basic movement styles. According to the two basic movement styles, the vertical movement and the lateral movement, several RF MEMS switches with different features are shown. Two different vertical actuating membrane bridge RF MEMS switches are obtained based on two different substrates. The first one has the advantage of compatibility with GaAs MMIC process, and the second one has the feature of flexibility. Furthermore, another two lateral actuating RF MEMS switches are demonstrated based on the SOG process. One is the push-pull type switch controlled by only one actuation signal, and the other is the three-state switch actuated by rhombic structures. By designing lateral actuating structures, some performances of the RF MEMS switches are improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adam F, Rick P, Ron N et al (2009) A single-crystal silicon DC−40 GHz RF MEMS switch. In: IEEE MTT-S digest, Boston, 2009

    Google Scholar 

  • Chan R, Lesnick R, Becher D et al (2003) Low-actuation voltage RF MEMS shunt switch with cold switching lifetime of seven billion cycles. J Microelectromech S 12(5):713–719

    Article  Google Scholar 

  • Cho IJ, Yoon E (2010) Design and fabrication of a single membrane push-pull SPDT RF MEMS switch operated by electromagnetic actuation and electrostatic hold. J Micromech Microeng 20:1–7

    Google Scholar 

  • Cho IJ, Song T, Baek SH et al (2005) A low-voltage and low-power RF MEMS series and shunt switches actuated by combination of electromagnetic and electrostatic forces. IEEE Trans Microw Theory Technol 53(7):2450–2457

    Article  Google Scholar 

  • Czaplewski DA, Nordquist CD, Patrizi GA et al (2013) RF MEMS switches with RuO2–Au contacts cycled to 10 billion cycles. J Microelectromech S 22(3):655–661

    Article  Google Scholar 

  • Daneshmand M, Fouladi S, Mansour RR et al (2009) Thermally actuated latching RF MEMS switch and its characteristics. IEEE Trans Microw Theory Technol 57(12):3229–3238

    Article  Google Scholar 

  • Gao XF, Han L, Nie M et al (2015) The study of a RF MEMS switch based on LCP substrate. In: IEEE sensors conference, Busan, 2015

    Google Scholar 

  • Girbau D, Pradell L, Lázaro A et al (2007) Electrothermally-actuated RF-MEMS suspended parallel switch. Microw Opt Technol Lett 49:2894–2896

    Article  Google Scholar 

  • Goggin R, Wong JE, Hecht B, et al (2011) Fully integrated, high yielding, high reliability DC contact MEMS switch technology & control IC in standard plastic packages. In: IEEE sensors conference, Limerick, 2011

    Google Scholar 

  • Goldsmith C, Lin TH, Powers B et al (1995) Micromechanical membrane switches for microwave applications. In: IEEE MTT-S digest, Orlando, 1995

    Google Scholar 

  • Goldsmith C, Randall J, Eshelman S et al (1996) Characteristics of micromachined switch at microwave frequencies. In: IEEE MTT-S digest, San Francisco, 1996

    Google Scholar 

  • Hah D, Yoon E, Hong S (2000) A low-voltage actuated micromachined microwave switch using torsion springs and leverage. IEEE Trans Microw Theory Technol 48:2540–2545

    Article  Google Scholar 

  • Herfst RW, Steeneken PG, Schmitz J et al (2008) Kelvin probe study of laterally inhomogeneous dielectric charging and charge diffusion in RF MEMS capacitive switches. In: IEEE international reliability physics symposium, Phoenix, 2008

    Google Scholar 

  • Kingsley N, Anagnostou DE, Tentzeris M et al (2007) RF MEMS sequentially reconfigurable sierpinski antenna on a flexible organic substrate with novel DC-biasing technique. J Microelectromech S 16:1185–1192

    Article  Google Scholar 

  • Lee HC, Park JH, Park JY et al (2005) Design, fabrication and RF performances of two different types of piezoelectrically actuated Ohmic MEMS switches. J Micromech Microeng 15:2098–2104

    Article  Google Scholar 

  • Majumder S, McGruer NE, Adams GG et al (2001) Study of contacts in anelectrostatically actuated microswitch. Sensor Actuat A Phys 93(1):19–26

    Article  Google Scholar 

  • Margomenos A, Katehi LPB (2004) Fabrication and accelerated hermeticity testing of an on-wafer package for RF MEMS. IEEE Trans Microw Theory Technol 52(6):1626–1636

    Article  Google Scholar 

  • Martinez JD, Blondy P, Pothier A et al (2007) Surface and bulk micromachined RF MEMS capacitive series switch for watt-range hot switching operation. In: Proceedings of 2nd European microwave integrated circuit conference, Munich, 2007

    Google Scholar 

  • Min B, Rebeiz GM (2005) W-band low-loss wafer-scale package for RF MEMS. In: Proceedings of European microwave conference, Paris, 2005

    Google Scholar 

  • Muldavin J, Boisvert R, Bozler C et al (2003) Power handling and linearity of MEM capacitive series switches. In: IEEE MTT-S digest, Philadelphia, 2003

    Google Scholar 

  • Pacheco S, Nguyen CT, Katehi LPB (1998) Micromechanical electrostatic K-band switches. In: IEEE MTT-S digest, Baltimore, 1998

    Google Scholar 

  • Papaioannou GJ, Exarchos M, Theonas V et al (2006) Effect of space charge polarization in radio frequency microelectromechanical system capacitive switch dielectric charging. Appl Phys Lett 89:103512. (3 pp)

    Article  Google Scholar 

  • Park J, Shim ES, Choi W et al (2009) A non-contact-type RF MEMS switch for 24-GHz radar applications. J Microelectromech S 18:163–173

    Article  Google Scholar 

  • Persano A, Quaranta F, Cola A et al (2010) Alternative materials for RF MEMS switches in III-V technology. In: Symposium on design test integration and packaging of MEMS/MOEMS (DTIP), Seville, 2010

    Google Scholar 

  • Petersen KE (1978) Micromechanical voltage controlled switches and circuits. In: IEEE international electron devices meeting, Washigton, 1978

    Google Scholar 

  • Rebeiz GM (2003) RF MEMS theory, design, and technology. Wiley Interscience, Hoboken

    Google Scholar 

  • Schauwecker B, Mehner J, Strohm KM et al (2004) Investigations of RF shunt airbridge switches among different environmental conditions. Sensor Actuat A Phys 114:49–58

    Article  Google Scholar 

  • Sedaghat-Pisheh H, Rebeiz GM (2010) Variable spring constant, high contact force RF MEMS switch. In: IEEE MTT-S digest, Anaheim, 2010

    Google Scholar 

  • Solazzi F, Tazzoli A, Farinelli P et al (2010) Active recovering mechanism for high performance RF MEMS redundancy switches. In: Proceedings of 40th European microwave conference, Paris, 2010

    Google Scholar 

  • Tang M, Liu AQ, Agarwal A (2005) A compact DC – 20 GHz SPDT switch circuit using lateral RF MEMS switches. In: Proceedings of Asia-Pacific microwave conference, Suzhou, 2005

    Google Scholar 

  • Tsou C, Li H, Chang HC (2007) A novel wafer-level-hermetic packaging for MEMS devices. IEEE Trans Adv Packag 30(4):616–621

    Article  Google Scholar 

  • Verger A, Pothier A, Guines C et al (2010) Sub-hundred nanosecond reconfiguration capabilities of nanogap RF MEMS switched capacitor. In: IEEE MTT-S digest, Anaheim, 2010

    Google Scholar 

  • Wang LF, Han L, Tang JY et al (2013a) Lateral contact three-state RF MEMS switch for ground wireless communication by actuating rhombic structures. J Microelectromech S 22(1):10–12

    Article  Google Scholar 

  • Wang LF, Tang JY, Huang QA (2013b) Effect of environmental humidity on dielectric charging effect in RF MEMS capacitive switches based on C-V properties. J Microelectromech S 22(3):637–645

    Article  Google Scholar 

  • Wang LF, Han L, Tang JY et al (2015) Laterally-actuated inside-driven RF MEMS switches fabricated by SOG process. J Micromech Microeng 25:065007. (10pp)

    Article  Google Scholar 

  • Weiser J (1998) Switching contacts in relays. In: 19th international conference on electric contact phenomena, Nuremburg, 1998

    Google Scholar 

  • Wolf ID, Spengen WM (2002) Techniques to study the reliability of metal RF MEMS capacitive switches. Microelectron Reliab 42:1789–1794

    Article  Google Scholar 

  • Yang WC, Budynas RG (2002) Roark’s formulas for stress and strain, 7th edn. McGraw-Hill, New York

    Google Scholar 

  • Yao ZJ, Chen S, Eshelman S (1999) Micromachined low-loss microwave switches. J Micromech Microeng 8(2):129–134

    Article  Google Scholar 

  • Zheng WB, Huang QA, Liao XP et al (2005) RF MEMS membrane switches on GaAs substrates for X-band applications. J Microelectromech S 14(3):464–471

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Feng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Wang, LF., Huang, QA., Han, L. (2017). RF MEMS Switch. In: Huang, QA. (eds) Micro Electro Mechanical Systems. Micro/Nano Technologies, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-2798-7_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2798-7_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2798-7

  • Online ISBN: 978-981-10-2798-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics