Skip to main content

Power Factor Control Mechanism for Optimum Efficiency in Wind Generators and Industrial Applications

  • Conference paper
  • First Online:
Transactions on Engineering Technologies (WCECS 2015)

Included in the following conference series:

  • 632 Accesses

Abstract

Power factor control mechanism play critical and important role to determine the ability and effectiveness of the operation of doubly-fed induction machines in wind generators and industrial applications. This work presents a vector control (VC) of an emerging brushless doubly-fed reluctance (BDFRG) technology for large wind turbine and industrial applications. The BDFRG has been receiving increasing attention due to its low operation and maintenance costs afforded by the use of partially-rated power electronics, and the high reliability of brushless assembly, while offering performance competitive to its traditional slip-ring counterpart, the doubly-fed induction generator (DFIG). A robust VC strategy has been developed for a custom-designed BDFRG fed from a conventional ‘back-to-back’ IGBT converter. Simulation studies and experimental verification has validated the algorithm under optimum power factor control (OPFC) conditions which allow the improved efficiency of the generator-converter set and the entire wind energy conversion systems (WECS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jovanovic MG, Betz RE, Yu J (2002) The use of doubly fed reluctance machines for large pumps and wind turbines. IEEE Trans Ind Appl 38:1508–1516

    Article  Google Scholar 

  2. Wang F, Zhang F, Xu L (2002) Parameter and performance comparison of doubly-fed brushless machine with cage and reluctance rotors. IEEE Trans Ind Appl 38(5):1237–1243

    Article  Google Scholar 

  3. Betz RE, Jovanovic MG (2003) Introduction to the space vector modelling of the brushless doubly-fed reluctance machine. Electr Power Compon Syst 31(8):729–755

    Article  Google Scholar 

  4. Dorrell DG, Jovanovi´c M (2008) On the possibilities of using a brushless doubly-fed reluctance generator in a 2 MW wind turbine. In: IEEE industry applications society annual meeting, pp 1–8, Oct 2008

    Google Scholar 

  5. McMahon RA, Roberts PC, Wang X, Tavner PJ (2006) Performance of BDFM as generator and motor. IEE Proc-Electr Power Appl 153(2):289–299, Mar 2006

    Google Scholar 

  6. Poza J, Oyarbide E, Sarasola I, Rodriguez M (2009) Vector control design and experimental evaluation for the brushless doubly fed machine. IET Electr Power Appl 3(4):247–256

    Article  Google Scholar 

  7. Protsenko K, Xu D (2008) Modeling and control of brushless doubly-fed induction generators in wind energy applications. IEEE Trans Power Electron 23(3):1191–1197

    Article  Google Scholar 

  8. Valenciaga F, Puleston PF (2007) Variable structure control of a wind energy conversion system based on a brushless doubly fed reluctance generator. IEEE Trans Energy Convers 22(2):499–506

    Article  Google Scholar 

  9. Polinder H, van der Pijl F, de Vilder G, Tavner P (2006) Comparison of direct-drive and geared generator concepts for wind turbines. IEEE Trans Energy Convers 21(3):725–733

    Article  Google Scholar 

  10. Spinato F, Tavner PJ, van Bussel G, Koutoulakos E (2009) Reliability of wind turbine subassemblies. IET Renew Power Gener 3(4):387–401

    Article  Google Scholar 

  11. Tohidi S, Zolghadri M, Oraee H, Tavner P, Abdi E, Logan T (2012) Performance of the brushless doubly-fed machine under normal and fault conditions. IET Electr Power Appl 6(9):621–627

    Article  Google Scholar 

  12. Barati F, McMahon R, Shao S, Abdi E, Oraee H (2013) Generalized vector control for brushless doubly fed machines with nested-loop rotor. IEEE Trans Ind Electron 60(6):2477–2485

    Article  Google Scholar 

  13. Knight A, Betz R, Dorrell D (2013) Design and analysis of brushless doubly fed reluctance machines. IEEE Trans Ind Appl 49(1):50–58

    Article  Google Scholar 

  14. Long T, Shao S, Malliband P, Abdi E, McMahon R (2013) Crowbar-less fault ride-through of the brushless doubly fed induction generator in a wind turbine under symmetrical voltage dips. IEEE Trans Ind Electron 60(7):2833–2841

    Article  Google Scholar 

  15. Cardenas R, Pena R, Alepuz S, Asher G (2013) Overview of control systems for the operation of DFIGs in wind energy applications. IEEE Trans Ind Electron 60(7):2776–2798

    Article  Google Scholar 

  16. Marques G, Sousa D (2012) Understanding doubly fed induction generator during voltage dips. IEEE Trans Energy Convers 27(2):421–431

    Article  Google Scholar 

  17. Tohidi S, Tavner P, McMahon R, Oraee H, Zolghadri M, Shao S, Abdi E (2014) Low voltage ride-through of DFIG and brushless DFIG: Similarities and differences. Electr Power Syst Res 110:64–72

    Article  Google Scholar 

  18. Obichere JK, Jovanovic M, Ademi S (2015) Power factor control of large doubly-fed reluctance wind generators. In: Lecture notes in engineering and computer science: Proceedings of The World Congress on Engineering and Computer Science 2015, WCECS 2015. San Francisco, USA, pp. 210–215, 21–23 Oct 2015

    Google Scholar 

  19. Jovanovic M (2009) Sensored and sensorless speed control methods for brushless doubly fed reluctance motors. IET Electr Power Appl 3(6):503–513

    Article  Google Scholar 

  20. Xu L, Zhen L, Kim E (1998) Field-orientation control of a doubly excited brushless reluctance machine. IEEE Trans Ind Appl 34(1):148–155

    Article  Google Scholar 

  21. Ademi S, Jovanovic M, Obichere JK (2014) Comparative analysis of control strategies for large doubly-fed reluctance wind generators. In: Lecture notes in engineering and computer science: proceedings of the world congress on engineering and computer science 2014, WCECS 2014. San Francisco, USA, pp 245–250, 22–24 Oct 2014

    Google Scholar 

  22. Jovanovi´c MG, Yu J, Levi E (2006) Encoderless direct torque controller for limited speed range applications of brushless doubly fed reluctance motors. IEEE Trans Ind Appl 42(3):712–722

    Google Scholar 

  23. Chaal H, Jovanovi´c M (2012) Practical implementation of sensorless torque and reactive power control of doubly fed machines. IEEE Trans Ind Electron 59(6):2645–2653

    Google Scholar 

  24. Chaal H, Jovanovic M (2012) Power control of brushless doubly-fed reluctance drive and generator systems. Renew Energy 37(1):419–425

    Article  Google Scholar 

  25. Valenciaga F (2010) Second order sliding power control for a variable speed-constant frequency energy conversion system. Energy Convers Manag 52(12):3000–3008

    Article  Google Scholar 

  26. Tremblay E, Atayde S, Chandra A (2011) Comparative study of control strategies for the doubly fed induction generator in wind energy conversion systems: a DSP-based implementation approach. IEEE Trans Sustain Energy 2(3):288–299

    Article  Google Scholar 

  27. Malinowski M, Kazmierkowski M, Trzynadlowski A (2003) A comparative study of control techniques for PWM rectifiers in ac adjustable speed drives. IEEE Trans Power Electron 18(6):1390–1396

    Article  MATH  Google Scholar 

  28. Ademi S, Jovanovic M (2014) Control of emerging brushless doubly fed reluctance wind turbine generators. In: Hossain J, Mahmud A (eds) Large scale renewable power generation, ser. green energy and technology. Springer, Singapore, pp 395–411

    Google Scholar 

  29. Ademi S, Jovanovic M (2015) Vector control methods for brushless doubly fed reluctance machines. IEEE Trans Ind Electron 62(1):96–104

    Article  Google Scholar 

  30. Ademi S, Jovanovic M (2014) High-efficiency control of brushless doubly-fed machines for wind turbines and pump drives. Energy Convers Manag 81:120–132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jude K. Obichere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Obichere, J.K., Jovanovic, M., Ademi, S. (2017). Power Factor Control Mechanism for Optimum Efficiency in Wind Generators and Industrial Applications. In: Ao, SI., Kim, H., Amouzegar, M. (eds) Transactions on Engineering Technologies. WCECS 2015. Springer, Singapore. https://doi.org/10.1007/978-981-10-2717-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2717-8_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2716-1

  • Online ISBN: 978-981-10-2717-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics