Skip to main content

EOG Artifacts Reduction from EEG Based on Deep Network and Recursive Least Squares Adaptive Filter

  • Conference paper
  • First Online:
Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems (AsiaSim 2016, SCS AutumnSim 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 645))

Included in the following conference series:

  • 1932 Accesses

Abstract

We developed a cascade of deep network and recursive least squares adaptive filter (DN-RLS) for electrooculogram (EOG) artifacts removal. The proposed method can be divided into offline stage and online stage. During the offline stage, EOG signals are used to train an DN to learn features of EOG signals. During the online stage, the learned DN is used to extract EOG artifacts from electroencephalogram (EEG), then a RLS filter is used to further remove EOG artifacts. The proposed method not only just needs few number of EEG channels in removal process, but also doesn’t need additional EOG recordings during online stage. We compared the proposed method to the independent component analysis (ICA) technique and a shallow network combined with RLS method. Experimental results show that the DN-RLS can learn features of EOG artifacts better and result in higher classification accuracy.

This project is supported by National Natural Science Foundation of China (31100709), the Shanghai Pujiang Program, China (No. 14PJ1431300) and Natural Science Foundation of Shanghai (No. 16ZR1424200).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nguyen, H.A.T., Musson, J., Li, F., et al.: EOG artifact removal using a wavelet neural network. Neurocomputing 97(1), 374–389 (2012)

    Article  Google Scholar 

  2. Nijboer, F., Broermann, U.: Brain-computer interfaces for communication and control in locked-in patients. In: Graimann, B., Pfurtscheller, G., Allison, B. (eds.) Brain-Computer Interfaces. The Frontiers Collection, pp. 185–201. Springer, Heidelberg (2010)

    Google Scholar 

  3. Chen, M., Liu, Y., Zhang, L.: Classification of stroke patients’ motor imagery EEG with autoencoders in BCI-FES rehabilitation training system. In: Loo, C.K., Yap, K.S., Wong, K.W., Beng Jin, A.T., Huang, K. (eds.) ICONIP 2014, Part III. LNCS, vol. 8836, pp. 202–209. Springer, Heidelberg (2014)

    Google Scholar 

  4. Hassan, A., Song, X.: A study of kernel CSP-based motor imagery brain computer interface classification. In: Signal Processing in Medicine and Biology Symposium, pp. 1–4 (2012)

    Google Scholar 

  5. Jing, H., Wang, C.-S., Min, W.: Removal of EOG and EMG artifacts from EEG using combination of functional link neural network and adaptive neural fuzzy inference system. Neurocomputing 151, 278–287 (2015)

    Article  Google Scholar 

  6. Devuyst, S., Dutoit, T., Ravet, T., Stenuit, P., Kerkhofs, M., Stanus, E.: Automatic processing of EEG-EOG-EMG artifacts in sleep stage classification. In: Lim, C.T., Goh, J.C.H. (eds.) ICBME 2008. IFMBE Proceedings, vol. 23, pp. 146–150. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Ai, G., Sato, N., Singh, B., et al.: Direction and viewing area-sensitive influence of EOG artifacts revealed in the EEG topographic pattern analysis. Cogn. Neurodyn. 10, 301–314 (2016)

    Article  Google Scholar 

  8. Gratton, G., Coles, M.G.H., Donchin, E.: A new method for off-line removal of ocular artifact. Electroencephalogr. Clin. Neurophysiol. 55(4), 468–484 (1983)

    Article  Google Scholar 

  9. Ghandeharion, H., Erfanian, A.: A fully automatic ocular artifact suppression from EEG data using higher order statistics: improved performance by wavelet analysis. Med. Eng. Phys. 32(7), 720–729 (2010)

    Article  Google Scholar 

  10. Ahmed, S., Merino, L.M., Mao, Z., et al.: A deep learning method for classification of images RSVP events with EEG data. In: Global Conference on Signal and Information Processing, pp. 33–36. IEEE (2013)

    Google Scholar 

  11. Hagemann, D., Naumann, E.: The effects of ocular artifacts on (lateralized) broadband power in the EEG. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 112(2), 215–231 (2001)

    Article  Google Scholar 

  12. Pizzagalli, D.A.: Electroencephalography and high-density electrophysiological source localization, pp. 56–84 (2007)

    Google Scholar 

  13. Vincent, P., Larochelle, H., Lajoie, I., et al.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(6), 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Stacked Autoencoders. http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders

  15. Rueda-Plata, D., Ramos-Pollán, R., González, F.A.: Supervised greedy layer-wise training for deep convolutional networks with small datasets. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI 2015, Part I. LNCS, vol. 9329, pp. 275–284. Springer International Publishing, Switzerland (2015)

    Chapter  Google Scholar 

  16. Ng, A.: Sparse autoencoder. CS294A Lecture Notes, vol. 72, pp. 1–19 (2011)

    Google Scholar 

  17. He, D.P., Wilson, G., Russell, C.: Removal of ocular artifacts from electro-encephalogram by adaptive filtering. Med. Biol. Eng. Comput. 42(3), 407–412 (2004)

    Article  Google Scholar 

  18. Leeb, R., Lee, F., Keinrath, C., et al.: Brain-computer communication: motivation, aim, and impact of exploring a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 15(4), 473–482 (2007)

    Article  Google Scholar 

  19. Leeb, R., Brunner, C., Mller-Putz, G.R.: BCI Competition 2008-Graz dataset B. Graz University of Technology (2008)

    Google Scholar 

  20. Klados, M.A., Bratsas, C., Frantzidis, C., et al.: A kurtosis-based automatic system using Naïve Bayesian classifier to identify ICA components contaminated by EOG or ECG artifacts. In: XII Mediterranean Conference on Medical and Biological Engineering and Computing, vol. 29, pp. 49–52 (2010)

    Google Scholar 

  21. Schlögl, A., Flotzinger, D., Pfurtscheller, G.: Adaptive autoregressive modeling used for single-trial EEG classification. Biomed. Tech. 42(6), 162–167 (1997)

    Article  Google Scholar 

  22. Hortal, E., Iáñez, E., Úbeda, A., María Azorín, J., Fernández, E.: Training study approaches for a SVM-based BCI: adaptation to the model vs adaptation to the user. In: Manuel Ferrández Vicente, J., Ramón Álvarez Sánchez, J., de la Paz López, F., Toledo Moreo, F. (eds.) IWINAC 2013, Part I. LNCS, vol. 7930, pp. 131–140. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banghua Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Yang, B., Duan, K., Zhang, T., Zhang, Y. (2016). EOG Artifacts Reduction from EEG Based on Deep Network and Recursive Least Squares Adaptive Filter. In: Zhang, L., Song, X., Wu, Y. (eds) Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems. AsiaSim SCS AutumnSim 2016 2016. Communications in Computer and Information Science, vol 645. Springer, Singapore. https://doi.org/10.1007/978-981-10-2669-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2669-0_44

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2668-3

  • Online ISBN: 978-981-10-2669-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics