Skip to main content

Pathology, Genomics, and Treatment of Endometrial Cancer

  • Chapter
  • First Online:
Precision Medicine in Gynecology and Obstetrics

Part of the book series: Comprehensive Gynecology and Obstetrics ((CGO))

  • 803 Accesses

Abstract

Endometrial cancer (EC) is the leading causes of gynecologic malignancy in westernized countries, in which people take fat-rich foods and the estimated incidence rate of EC has kept increasing. EC has been traditionally classified into two categories, Type I and Type II, based on morphologic features. Type I ECs, composed of low-grade endometrioid carcinoma, possess alterations in PTEN, PIK3CA, ARID1A, K-ras, β-catenin, and/or DNA mismatch repair genes and usually have good prognosis. Type II ECs, mainly composed of serous and clear cell carcinoma, have different gene alterations such as TP53 and PPP2R1A to exhibit aggressive features with poor prognostic outcome. This classification is still convenient to comprehend EC natures roughly or to provide ordinary treatments in the clinical setting, but there are several limitations to investigate EC genomics and to develop a novel therapy for treatment-refractory disease as Type I ECs are not uniform in genetics and Type II ECs are also composed of various histological subtypes. Recent genome-wide analysis provides new concepts as molecular subtyping and genetic predisposition of heterogeneous Type I ECs, which is expected to proceed future personalized medicine. As for Type II ECs, there is no reproducible breakthrough translational achievement, and so that subtype-specific genome-wide analysis with large enough sample size is now warranted for revealing genetics and developing effective therapies for treatment-refractory cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  PubMed  Google Scholar 

  2. Torre LA, Sauer AM, Chen Jr MS, Kagawa-Singer M, Jemal A, Siegel RL. Cancer statistics for Asian Americans, Native Hawaiians, and Pacific Islanders, 2016: converging incidence in males and females. CA Cancer J Clin. 2016;66(3):182–202.

    Article  PubMed  PubMed Central  Google Scholar 

  3. DeSantis CE, Siegel RL, Sauer AG, Miller KD, Fedewa SA, et al. Cancer statistics for African Americans, 2016: progress and opportunities in reducing racial disparities. CA Cancer J Clin. 2016;66(4):290–308.

    Article  PubMed  Google Scholar 

  4. Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73.

    Article  PubMed  Google Scholar 

  5. Bokhman JV. Two pathogenetic types of endometrial carcinoma. Gynecol Oncol. 1983;15(1):10–7.

    Article  CAS  PubMed  Google Scholar 

  6. Lax SF, Kurman RJ. A dualistic model for endometrial carcinogenesis based on immunohistochemical and molecular genetic analyses. Verh Dtsch Ges Pathol. 1997;81:228–32.

    CAS  PubMed  Google Scholar 

  7. McConechy MK, Ding J, Cheang MC, Wiegand KC, Senz J, Tone AA, et al. Use of mutation profiles to refine the classification of endometrial carcinomas. J Pathol. 2012;228(1):20–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Matias-Guiu X, Prat J. Molecular pathology of endometrial carcinoma. Histopathology. 2013;62(1):111–23.

    Article  PubMed  Google Scholar 

  9. Black JD, English DP, Roque DM, Santin AD. Targeted therapy in uterine serous carcinoma: an aggressive variant of endometrial cancer. Womens Health (Lond). 2014;10(1):45–57.

    Article  CAS  Google Scholar 

  10. McConechy MK, Anglesio MS, Kalloger SE, Yang W, Senz J, Chow C, et al. Subtype-specific mutation of PPP2R1A in endometrial and ovarian carcinomas. J Pathol. 2011;223(5):567–73.

    Article  CAS  PubMed  Google Scholar 

  11. Hoang LN, McConechy MK, Köbel M, Han G, Rouzbahman M, et al. Histotype-genotype correlation in 36 high-grade endometrial carcinomas. Am J Surg Pathol. 2013;37(9):1421–32.

    Article  PubMed  Google Scholar 

  12. Gilks CB, Oliva E, Soslow RA. Poor interobserver reproducibility in the diagnosis of high-grade endometrial carcinoma. Am J Surg Pathol. 2013;37(6):874–81.

    Article  PubMed  Google Scholar 

  13. Daikoku T, Hirota Y, Tranguch S, Joshi AR, DeMayo FJ, et al. Conditional loss of uterine Pten unfailingly and rapidly induces endometrial cancer in mice. Cancer Res. 2008;68(14):5619–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jia L, Liu Y, Yi X, Miron A, Crum CP, et al. Endometrial glandular dysplasia with frequent p53 gene mutation: a genetic evidence supporting its precancer nature for endometrial serous carcinoma. Clin Cancer Res. 2008;14(8):2263–9.

    Article  CAS  PubMed  Google Scholar 

  15. Jarboe EA, Pizer ES, Miron A, Monte N, Mutter GL, Crum CP. Evidence for a latent precursor (p53 signature) that may precede serous endometrial intraepithelial carcinoma. Mod Pathol. 2009;22(3):345–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang X, Liang SX, Jia L, Chen N, Fadare O, et al. Molecular identification of “latent precancers” for endometrial serous carcinoma in benign-appearing endometrium. Am J Pathol. 2009;174(6):2000–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuhn E, Wu RC, Guan B, Wu G, Zhang J, et al. Identification of molecular pathway aberrations in uterine serous carcinoma by genome-wide analyses. J Natl Cancer Inst. 2012;104(19):1503–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Patch AM, Christie EL, Etemadmoghadam D, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521:489–94.

    Article  CAS  PubMed  Google Scholar 

  19. Haesen D, Abbasi Asbagh L, Derua R, Hubert A, Schrauwen S, et al. Recurrent PPP2R1A mutations in uterine cancer act through a dominant-negative mechanism to promote malignant cell growth. Cancer Res. 2016;76(19):5719–31.

    Article  CAS  PubMed  Google Scholar 

  20. Chan JK, Loizzi V, Youssef M, Osann K, Rutgers J, et al. Significance of comprehensive surgical staging in noninvasive papillary serous carcinoma of the endometrium. Gynecol Oncol. 2003;90(1):181–5.

    Article  PubMed  Google Scholar 

  21. Slomovitz BM, Jiang Y, Yates MS, Soliman PT, Johnston T, et al. Phase II study of everolimus and letrozole in patients with recurrent endometrial carcinoma. J Clin Oncol. 2015;33(8):930–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cocco E, Lopez S, Black J, Bellone S, Bonazzoli E, et al. Dual CCNE1/PIK3CA targeting is synergistic in CCNE1-amplified/PIK3CA-mutated uterine serous carcinomas in vitro and in vivo. Br J Cancer. 2016;115(3):303–11.

    Article  CAS  PubMed  Google Scholar 

  23. Aghajanian C, Sill MW, Darcy KM, Greer B, McMeekin DS, et al. Phase II trial of bevacizumab in recurrent or persistent endometrial cancer: a Gynecologic Oncology Group Study. J Clin Oncol. 2011;29(16):2259–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alvarez EA, Brady WE, Walker JL, Rotmensch J, Zhou XC, et al. Phase II trial of combination bevacizumab and temsirolimus in the treatment of recurrent or persistent endometrial carcinoma: a Gynecologic Oncology Group Study. Gynecol Oncol. 2013;129(1):22–7.

    Article  CAS  PubMed  Google Scholar 

  25. Jones NL, Xiu J, Chatterjee-Paer S, Buckley de Meritens A, Burke WM, et al. Distinct molecular landscapes between endometrioid and nonendometrioid uterine carcinomas. Int J Cancer. 2017;140(6):1396–404.

    Article  CAS  PubMed  Google Scholar 

  26. Untch M, Gelber RD, Jackisch C, Procter M, Baselga J, et al. Estimating the magnitude of trastuzumab effects within patient subgroups in the HERA trial. Ann Oncol. 2008;19(6):1090–6.

    Article  CAS  PubMed  Google Scholar 

  27. Fleming GF, Sill MW, Darcy KM, McMeekin DS, Thigpen JT, et al. Phase II trial of trastuzumab in women with advanced or recurrent, HER2-positive endometrial carcinoma: a Gynecologic Oncology Group Study. Gynecol Oncol. 2010;116(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  28. Growdon WB, Groeneweg J, Byron V, DiGloria C, Borger DR, et al. HER2 over-expressing high grade endometrial cancer expresses high levels of p95HER2 variant. Gynecol Oncol. 2015;137(1):160–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoang LN, McConechy MK, Meng B, McIntyre JB, Ewanowich C, et al. Targeted mutation analysis of endometrial clear cell carcinoma. Histopathology. 2015;66(5):664–74.

    Article  PubMed  Google Scholar 

  30. Fadare O, Desouki MM, Gwin K, Hanley KZ, Jarboe EA, et al. Frequent expression of napsin A in clear cell carcinoma of the endometrium: potential diagnostic utility. Am J Surg Pathol. 2014;38(2):189–96.

    Article  PubMed  Google Scholar 

  31. Wiegand KC, Lee AF, Al-Agha OM, Chow C, Kalloger SE, et al. Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. J Pathol. 2011;224(3):328–33.

    Article  CAS  PubMed  Google Scholar 

  32. Fadare O, Gwin K, Desouki MM, Crispens MA, Jones III HW, et al. The clinicopathologic significance of p53 and BAF-250a (ARID1A) expression in clear cell carcinoma of the endometrium. Mod Pathol. 2013;26(8):1101–10.

    Article  CAS  PubMed  Google Scholar 

  33. Abou-Taleb H, Yamaguchi K, Matsumura N, Murakami R, Nakai H, et al. Comprehensive assessment of the expression of the SWI/SNF complex defines two distinct prognostic subtypes of ovarian clear cell carcinoma. Oncotarget. 2016;7(34):54758–70.

    PubMed  PubMed Central  Google Scholar 

  34. Cherniack AD, Shen H, Walter V, Stewart C, Murray BA, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31(3):411–23.

    Google Scholar 

  35. Matsuo K, Takazawa Y, Ross MS, Elishaev E, Podzielinski I, et al. Significance of histologic pattern of carcinoma and sarcoma components on survival outcomes of uterine carcinosarcoma. Ann Oncol. 2016;27(7):1257–66.

    Article  CAS  PubMed  Google Scholar 

  36. Creasman WT, Odicino F, Maisonneuve P, Quinn MA, Beller U, Benedet JL, et al. Carcinoma of the corpus uteri. FIGO 26th Annual Report on the Results of Treatment in Gynecological Cancer. Int J Gynaecol Obstet. 2006;95(Suppl 1):S105–43.

    Article  PubMed  Google Scholar 

  37. Hertel JD, Huettner PC, Pfeifer JD. Lymphovascular space invasion in microcystic elongated and fragmented (MELF)-pattern well-differentiated endometrioid adenocarcinoma is associated with a higher rate of lymph node metastasis. Int J Gynecol Pathol. 2014;33(2):127–34.

    Article  PubMed  Google Scholar 

  38. Joehlin-Price AS, McHugh KE, Stephens JA, Li Z, Backes FJ, et al. The microcystic, elongated, and fragmented (MELF) pattern of invasion: a single institution report of 464 consecutive FIGO grade 1 endometrial Endometrioid adenocarcinomas. Am J Surg Pathol. 2017;41(1):49–55.

    Article  PubMed  Google Scholar 

  39. Pelletier MP, Trinh VQ, Stephenson P, Mes-Masson AM, Samouelian V, et al. Microcystic, elongated and fragmented (MELF) pattern invasion is mainly associated with isolated tumor cell pattern metastases in FIGO grade I endometrioid endometrial cancer (EEC). Hum Pathol. 2016. pii: S0046-8177(16)30306-9. doi:10.1016/j.humpath.2016.10.023. [Epub ahead of print].

  40. Han G, Lim D, Leitao Jr MM, Abu-Rustum NR, Soslow RA, et al. Histological features associated with occult lymph node metastasis in FIGO clinical stage I, grade I endometrioid carcinoma. Histopathology. 2014;64(3):389–98.

    Article  PubMed  Google Scholar 

  41. Tahara S, Nojima S, Ohshima K, Hori Y, Kurashige M, et al. S100A4 accelerates the proliferation and invasion of endometrioid carcinoma and is associated with the “MELF” pattern. Cancer Sci. 2016;107(9):1345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kommoss F, Kommoss F, Grevenkamp F, Bunz AK, Taran FA, et al. L1CAM: amending the “low-risk” category in endometrial carcinoma. J Cancer Res Clin Oncol. 2017;143(2):255–62.

    Article  CAS  PubMed  Google Scholar 

  43. Fujii S, Kido A, Baba T, Fujimoto K, Daido S, et al. Subendometrial enhancement and peritumoral enhancement for assessing endometrial cancer on dynamic contrast enhanced MR imaging. Eur J Radiol. 2015;84(4):581–9.

    Article  PubMed  Google Scholar 

  44. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.

    Article  Google Scholar 

  45. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.

    Article  Google Scholar 

  46. Le Gallo M, Bell DW. The emerging genomic landscape of endometrial cancer. Clin Chem. 2014;60(1):98–110.

    Article  PubMed  Google Scholar 

  47. Zighelboim I, Goodfellow PJ, Gao F, Gibb RK, Powell MA, et al. Microsatellite instability and epigenetic inactivation of MLH1 and outcome of patients with endometrial carcinomas of the endometrioid type. J Clin Oncol. 2007;25(15):2042–8.

    Article  CAS  PubMed  Google Scholar 

  48. Diaz-Padilla I, Romero N, Amir E, Matias-Guiu X, Vilar E, et al. Mismatch repair status and clinical outcome in endometrial cancer: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2013;88(1):154–67.

    Article  PubMed  Google Scholar 

  49. Byron SA, Gartside M, Powell MA, Wellens CL, Gao F, et al. FGFR2 point mutations in 466 endometrioid endometrial tumors: relationship with MSI, KRAS, PIK3CA, CTNNB1 mutations and clinicopathological features. PLoS One. 2012;7(2):e30801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Le Gallo M, O'Hara AJ, Rudd ML, Urick ME, Hansen NF, et al. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat Genet. 2012;44(12):1310–5.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kharma B, Baba T, Mandai M, Matsumura N, Murphy SK, Kang HS, et al. Utilization of genomic signatures to identify high-efficacy candidate drugs for chemorefractory endometrial cancers. Int J Cancer. 2013;133(9):2234–44.

    Article  CAS  PubMed  Google Scholar 

  52. Kharma B, Baba T, Matsumura N, Kang HS, Hamanishi J, et al. STAT1 drives tumor progression in serous papillary endometrial cancer. Cancer Res. 2014;74(22):6519–30.

    Article  CAS  PubMed  Google Scholar 

  53. Chen MM, O'Mara TA, Thompson DJ, Painter JN, Australian National Endometrial Cancer Study Group (ANECS), et al. GWAS meta-analysis of 16 852 women identifies new susceptibility locus for endometrial cancer. Hum Mol Genet. 2016;25(12):2612–20.

    CAS  PubMed  Google Scholar 

  54. Welter D, MacArthur J, Morales J, Burdett T, Hall P, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42(Database issue):D1001–6.

    Article  CAS  PubMed  Google Scholar 

  55. Wadolowska L, Kowalkowska J, Czarnocinska J, Jezewska-Zychowicz M, Babicz-Zielinska E. Comparing dietary patterns derived by two methods and their associations with obesity in Polish girls aged 13–21 years: the cross-sectional GEBaHealth study. Perspect Public Health. 2016 Nov 29. pii: 1757913916679859. [Epub ahead of print].

    Google Scholar 

  56. Evangelou E, Ioannidis JP. Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet. 2013;14(6):379–89.

    Article  CAS  PubMed  Google Scholar 

  57. Cheng TH, Thompson DJ, O’Mara TA, Painter JN, Glubb DM, et al. Five endometrial cancer risk loci identified through genome-wide association analysis. Nat Genet. 2016;48(6):667–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Murakami R, Matsumura N, Brown JB, et al. Prediction of taxane and platinum sensitivity in ovarian cancer based on gene expression profiles. Gynecol Oncol. 2016;141:49–56.

    Article  CAS  PubMed  Google Scholar 

  59. Gourley C, McCavigan A, Perren T, et al. Molecular subgroup of high-grade serous ovarian cancer (HGSOC) as a predictor of outcome following bevacizumab. J Clin Oncol. 2014;32:5s. abstr 5502

    Google Scholar 

  60. Winterhoff BJN, Kommoss S, Oberg AL, et al. Bevacizumab and improvement of progression-free survival (PFS) for patients with the mesenchymal molecular subtype of ovarian cancer. J Clin Oncol. 2014;32:5s. abstr 5509

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsukasa Baba M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Baba, T. (2017). Pathology, Genomics, and Treatment of Endometrial Cancer. In: Konishi, I. (eds) Precision Medicine in Gynecology and Obstetrics. Comprehensive Gynecology and Obstetrics. Springer, Singapore. https://doi.org/10.1007/978-981-10-2489-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2489-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2488-7

  • Online ISBN: 978-981-10-2489-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics