Skip to main content

Trauma, Regulated Cell Death, and Inflammation

  • Chapter
  • First Online:
Advanced Trauma and Surgery
  • 1246 Accesses

Abstract

Trauma is a significant regulator of cell death , which, in turn, plays an important role in the regulation of inflammation. The efficacy of tissue homeostasis includes several factors such as the removal of foreign microbial pathogens and the removal and identification of dead and dying cells. Further research has led to an enhanced knowledge on the connection between cell death and inflammation, expanding past understanding of the signaling pathways that regulate and affect different forms of cell death and inflammatory responses. This chapter presents an overview of the major types of cell death related to inflammation and the mechanisms underlying trauma regulation of cell death. The impact of these cell death pathways allows for the identification of a therapeutic target for inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Suzanne M, Steller H. Shaping organisms with apoptosis. Cell Death Differ. 2013;20:669–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9:231–41.

    Article  CAS  PubMed  Google Scholar 

  3. Kroemer G, et al. Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ. 2009;16:3–11.

    Article  CAS  PubMed  Google Scholar 

  4. Galluzzi L, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 2015;22:58–73.

    Article  CAS  PubMed  Google Scholar 

  5. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 2010;28:367–88.

    Article  CAS  PubMed  Google Scholar 

  6. Sun L, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148:213–27.

    Article  CAS  PubMed  Google Scholar 

  7. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol. 2010;11:700–14.

    Article  CAS  PubMed  Google Scholar 

  8. Cho YS, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137:1112–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feng S, et al. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal. 2007;19:2056–67.

    Article  CAS  PubMed  Google Scholar 

  10. Galluzzi L, et al. Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ. 2012;19:107–20.

    Article  CAS  PubMed  Google Scholar 

  11. Andera L. Signaling activated by the death receptors of the TNFR family. Biomed Pap Med Fac Univ Palacky, Olomouc, Czechoslovakia. 2009;153:173–80.

    Article  CAS  Google Scholar 

  12. Wertz IE, Dixit VM. Ubiquitin-mediated regulation of TNFR1 signaling. Cytokine Growth Factor Rev. 2008;19:313–24.

    Article  CAS  PubMed  Google Scholar 

  13. Mahoney DJ, et al. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci U S A. 2008;105:11778–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Varfolomeev E, et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem. 2008;283:24295–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. O’Donnell MA, Legarda-Addison D, Skountzos P, Yeh WC, Ting AT. Ubiquitination of RIP1 regulates an NF-kappaB-independent cell-death switch in TNF signaling. Curr Biol CB. 2007;17:418–24.

    Article  CAS  PubMed  Google Scholar 

  16. Feoktistova M, et al. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell. 2011;43:449–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bertrand MJ, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell. 2008;30:689–700.

    Article  CAS  PubMed  Google Scholar 

  18. Declercq W, Vanden Berghe T, Vandenabeele P. RIP kinases at the crossroads of cell death and survival. Cell. 2009;138:229–32.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao J, et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci U S A. 2012;109:5322–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Orozco S, et al. RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis. Cell Death Differ. 2014;21:1511–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu XN, et al. Distinct roles of RIP1-RIP3 hetero- and RIP3-RIP3 homo-interaction in mediating necroptosis. Cell Death Differ. 2014;21:1709–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Murphy JM, et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity. 2013;39:443–53.

    Article  CAS  PubMed  Google Scholar 

  23. Kaiser WJ, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem. 2013;288:31268–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Polykratis A, et al. Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. J Immunol. 2014;193:1539–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thapa RJ, et al. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc Natl Acad Sci U S A. 2013;110:E3109–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Upton JW, Kaiser WJ, Mocarski ES. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe. 2012;11:290–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen X, et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res. 2014;24:105–21.

    Article  CAS  PubMed  Google Scholar 

  28. Vanden Berghe T, et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ. 2010;17:922–30.

    Article  CAS  PubMed  Google Scholar 

  29. Sakon S, et al. NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J. 2003;22:3898–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jezek P, Hlavata L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol. 2005;37:2478–503.

    Article  CAS  PubMed  Google Scholar 

  31. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003;278:36027–31.

    Article  CAS  PubMed  Google Scholar 

  32. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4:181–9.

    Article  CAS  PubMed  Google Scholar 

  33. Wu YT, et al. zVAD-induced necroptosis in L929 cells depends on autocrine production of TNFalpha mediated by the PKC-MAPKs-AP-1 pathway. Cell Death Differ. 2011;18:26–37.

    Article  CAS  PubMed  Google Scholar 

  34. Hayakawa M, et al. Arachidonic acid-selective cytosolic phospholipase A2 is crucial in the cytotoxic action of tumor necrosis factor. J Biol Chem. 1993;268:11290–5.

    CAS  PubMed  Google Scholar 

  35. van Leyen K, Duvoisin RM, Engelhardt H, Wiedmann M. A function for lipoxygenase in programmed organelle degradation. Nature. 1998;395:392–5.

    Article  PubMed  Google Scholar 

  36. Maccarrone M, Melino G, Finazzi-Agro A. Lipoxygenases and their involvement in programmed cell death. Cell Death Differ. 2001;8:776–84.

    Article  CAS  PubMed  Google Scholar 

  37. Festjens N, et al. Butylated hydroxyanisole is more than a reactive oxygen species scavenger. Cell Death Differ. 2006;13:166–9.

    Article  CAS  PubMed  Google Scholar 

  38. Welz PS, et al. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature. 2011;477:330–4.

    Article  CAS  PubMed  Google Scholar 

  39. Gunther C, et al. Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature. 2011;477:335–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Degterev A, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1:112–9.

    Article  CAS  PubMed  Google Scholar 

  41. He S, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 2009;137:1100–11.

    Article  CAS  PubMed  Google Scholar 

  42. Upton JW, Kaiser WJ, Mocarski ES. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe. 2010;7:302–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Artal-Sanz M, Tavernarakis N. Proteolytic mechanisms in necrotic cell death and neurodegeneration. FEBS Lett. 2005;579:3287–96.

    Article  CAS  PubMed  Google Scholar 

  44. Duprez L, et al. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity. 2011;35:908–18.

    Article  CAS  PubMed  Google Scholar 

  45. Linkermann A, et al. Dichotomy between RIP1- and RIP3-mediated necroptosis in tumor necrosis factor-alpha-induced shock. Mol Med. 2012;18:577–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Robinson N, et al. Type I interferon induces necroptosis in macrophages during infection with salmonella enterica serovar typhimurium. Nat Immunol. 2012;13:954–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol. 2010;10:36–46.

    Article  CAS  PubMed  Google Scholar 

  48. Lin J, et al. A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep. 2013;3:200–10.

    Article  CAS  PubMed  Google Scholar 

  49. Linkermann A, et al. Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int. 2012;81:751–61.

    Article  CAS  PubMed  Google Scholar 

  50. Oerlemans MI, et al. Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res Cardiol. 2012;107:270.

    Article  CAS  PubMed  Google Scholar 

  51. Rosenbaum DM, et al. Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J Neurosci Res. 2010;88:1569–76.

    CAS  PubMed  Google Scholar 

  52. Chavez-Valdez R, Martin LJ, Northington FJ. Programmed necrosis: a prominent mechanism of cell death following neonatal brain injury. Neurol Res Int. 2012;2012:257563.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Eum KH, Lee M. Crosstalk between autophagy and apoptosis in the regulation of paclitaxel-induced cell death in v-Ha-ras-transformed fibroblasts. Mol Cell Biochem. 2011;348:61–8.

    Article  CAS  PubMed  Google Scholar 

  54. Ouyang L, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45:487–98.

    Article  CAS  PubMed  Google Scholar 

  55. Fadeel B, Orrenius S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med. 2005;258:479–517.

    Article  CAS  PubMed  Google Scholar 

  56. Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin. 2005;55:178–94.

    Article  PubMed  Google Scholar 

  57. Roberts TL, et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science. 2009;323:1057–60.

    Article  CAS  PubMed  Google Scholar 

  58. Pierini R, et al. AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. Cell Death Differ. 2012;19:1709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sagulenko V, et al. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ. 2013;20:1149–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Abdelaziz DH, et al. Asc-dependent and independent mechanisms contribute to restriction of legionella pneumophila infection in murine macrophages. Front Microbiol. 2011;2:18.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Puri AW, Broz P, Shen A, Monack DM, Bogyo M. Caspase-1 activity is required to bypass macrophage apoptosis upon salmonella infection. Nat Chem Biol. 2012;8:745–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Masumoto J, et al. ASC is an activating adaptor for NF-kappa B and caspase-8-dependent apoptosis. Biochem Biophys Res Commun. 2003;303:69–73.

    Article  CAS  PubMed  Google Scholar 

  63. Dondelinger Y, et al. RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death Differ. 2013;20:1381–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ravichandran KS, Lorenz U. Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol. 2007;7:964–74.

    Article  CAS  PubMed  Google Scholar 

  65. Martin SJ, et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med. 1995;182:1545–56.

    Article  CAS  PubMed  Google Scholar 

  66. Miyanishi M, et al. Identification of Tim4 as a phosphatidylserine receptor. Nature. 2007;450:435–9.

    Article  CAS  PubMed  Google Scholar 

  67. Kobayashi N, et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity. 2007;27:927–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Park JH, et al. RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J Immunol. 2007;178:2380–6.

    Article  CAS  PubMed  Google Scholar 

  69. Park BC, et al. Chloroquine-induced nitric oxide increase and cell death is dependent on cellular GSH depletion in A172 human glioblastoma cells. Toxicol Lett. 2008;178:52–60.

    Article  CAS  PubMed  Google Scholar 

  70. Serhan CN, et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 2007;21:325–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zemans RL, et al. Neutrophil transmigration triggers repair of the lung epithelium via beta-catenin signaling. Proc Natl Acad Sci U S A. 2011;108:15990–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Farnworth SL, et al. Galectin-3 reduces the severity of pneumococcal pneumonia by augmenting neutrophil function. Am J Pathol. 2008;172:395–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Savill JS, et al. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest. 1989;83:865–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Haslett C. Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am J Respir Crit Care Med. 1999;160:S5–11.

    Article  CAS  PubMed  Google Scholar 

  75. Persson CG, Uller L. Resolution of cell-mediated airways diseases. Respir Res. 2010;11:75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Beauvillain C, et al. CCR7 is involved in the migration of neutrophils to lymph nodes. Blood. 2011;117:1196–204.

    Article  CAS  PubMed  Google Scholar 

  77. Watson RW, Redmond HP, Wang JH, Condron C, Bouchier-Hayes D. Neutrophils undergo apoptosis following ingestion of Escherichia coli. J Immunol. 1996;156:3986–92.

    CAS  PubMed  Google Scholar 

  78. Koedel U, et al. Apoptosis is essential for neutrophil functional shutdown and determines tissue damage in experimental pneumococcal meningitis. PLoS Pathog. 2009;5:e1000461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hodge S, Hodge G, Scicchitano R, Reynolds PN, Holmes M. Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol Cell Biol. 2003;81:289–96.

    Article  PubMed  Google Scholar 

  80. Morimoto K, Janssen WJ, Terada M. Defective efferocytosis by alveolar macrophages in IPF patients. Respir Med. 2012;106:1800–3.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Vandivier RW, et al. Impaired clearance of apoptotic cells from cystic fibrosis airways. Chest. 2002;121:89S.

    Article  PubMed  Google Scholar 

  82. McPhillips K, et al. TNF-alpha inhibits macrophage clearance of apoptotic cells via cytosolic phospholipase A2 and oxidant-dependent mechanisms. J Immunol. 2007;178:8117–26.

    Article  CAS  PubMed  Google Scholar 

  83. Nakaya M, Tanaka M, Okabe Y, Hanayama R, Nagata S. Opposite effects of rho family GTPases on engulfment of apoptotic cells by macrophages. J Biol Chem. 2006;281:8836–42.

    Article  CAS  PubMed  Google Scholar 

  84. Moon C, Lee YJ, Park HJ, Chong YH, Kang JL. N-acetylcysteine inhibits RhoA and promotes apoptotic cell clearance during intense lung inflammation. Am J Respir Crit Care Med. 2010;181:374–87.

    Article  CAS  PubMed  Google Scholar 

  85. Cepkova M, Matthay MA. Pharmacotherapy of acute lung injury and the acute respiratory distress syndrome. J Intensive Care Med. 2006;21:119–43.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fitzpatrick AM, Holguin F, Teague WG, Brown LA. Alveolar macrophage phagocytosis is impaired in children with poorly controlled asthma. J Allergy Clin Immunol. 2008;121:1372–1378(e1371–1373).

    Google Scholar 

  87. Huynh ML, et al. Defective apoptotic cell phagocytosis attenuates prostaglandin E2 and 15-hydroxyeicosatetraenoic acid in severe asthma alveolar macrophages. Am J Respir Crit Care Med. 2005;172:972–9.

    Article  PubMed  Google Scholar 

  88. Hotchkiss RS, et al. Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc Natl Acad Sci U S A. 1999;96:14541–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hotchkiss RS, et al. Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nat Immunol. 2000;1:496–501.

    Article  CAS  PubMed  Google Scholar 

  90. Methot N, et al. Differential efficacy of caspase inhibitors on apoptosis markers during sepsis in rats and implication for fractional inhibition requirements for therapeutics. J Exp Med. 2004;199:199–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Juncadella IJ, et al. Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature. 2013;493:547–51.

    Article  CAS  PubMed  Google Scholar 

  92. Fadok VA, et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest. 1998;101:890–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest. 2002;109:41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hersh D, et al. The salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci U S A. 1999;96:2396–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen Y, Smith MR, Thirumalai K, Zychlinsky A. A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO J. 1996;15:3853–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bergsbaken T, Cookson BT. Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog. 2007;3:e161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kelk P, Johansson A, Claesson R, Hanstrom L, Kalfas S. Caspase 1 involvement in human monocyte lysis induced by Actinobacillus actinomycetemcomitans leukotoxin. Infect Immun. 2003;71:4448–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sun GW, Lu J, Pervaiz S, Cao WP, Gan YH. Caspase-1 dependent macrophage death induced by Burkholderia pseudomallei. Cell Microbiol. 2005;7:1447–58.

    Article  CAS  PubMed  Google Scholar 

  99. Fink SL, Bergsbaken T, Cookson BT. Anthrax lethal toxin and salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. Proc Natl Acad Sci U S A. 2008;105:4312–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Thumbikat P, Dileepan T, Kannan MS, Maheswaran SK. Mechanisms underlying Mannheimia haemolytica leukotoxin-induced oncosis and apoptosis of bovine alveolar macrophages. Microb Pathog. 2005;38:161–72.

    Article  CAS  PubMed  Google Scholar 

  101. Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE. Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog. 2006;2:e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Molofsky AB, et al. Cytosolic recognition of flagellin by mouse macrophages restricts legionella pneumophila infection. J Exp Med. 2006;203:1093–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006;8:1812–25.

    Article  CAS  PubMed  Google Scholar 

  104. Brennan MA, Cookson BT. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol Microbiol. 2000;38:31–40.

    Article  CAS  PubMed  Google Scholar 

  105. Monack DM, Raupach B, Hromockyj AE, Falkow S. Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc Natl Acad Sci U S A. 1996;93:9833–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hilbi H, Chen Y, Thirumalai K, Zychlinsky A. The interleukin 1beta-converting enzyme, caspase 1, is activated during Shigella flexneri-induced apoptosis in human monocyte-derived macrophages. Infect Immun. 1997;65:5165–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. von Moltke J, Ayres JS, Kofoed EM, Chavarria-Smith J, Vance RE. Recognition of bacteria by inflammasomes. Annu Rev Immunol. 2013;31:73–106.

    Article  CAS  Google Scholar 

  108. Chae JJ, et al. Gain-of-function pyrin mutations induce NLRP3 protein-independent interleukin-1beta activation and severe autoinflammation in mice. Immunity. 2011;34:755–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Franklin BS, et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol. 2014;15:727–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Delaleu N, Bickel M. Interleukin-1 beta and interleukin-18: regulation and activity in local inflammation. Periodontol. 2004;2000(35):42–52.

    Article  Google Scholar 

  111. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H. Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol. 2001;19:423–74.

    Article  CAS  PubMed  Google Scholar 

  112. Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell. 2006;126:1135–45.

    Article  CAS  PubMed  Google Scholar 

  113. Wang S, et al. Identification and characterization of Ich-3, a member of the interleukin-1beta converting enzyme (ICE)/Ced-3 family and an upstream regulator of ICE. J Biol Chem. 1996;271:20580–7.

    Article  CAS  PubMed  Google Scholar 

  114. Wang S, et al. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell. 1998;92:501–9.

    Article  CAS  PubMed  Google Scholar 

  115. Kang SJ, et al. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J Cell Biol. 2000;149:613–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science. 2013;341:1250–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kayagaki N, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science. 2013;341:1246–9.

    Article  CAS  PubMed  Google Scholar 

  118. Lara-Tejero M, et al. Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J Exp Med. 2006;203:1407–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Raupach B, Peuschel SK, Monack DM, Zychlinsky A. Caspase-1-mediated activation of interleukin-1beta (IL-1beta) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar typhimurium infection. Infect Immun. 2006;74:4922–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mariathasan S, Weiss DS, Dixit VM, Monack DM. Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J Exp Med. 2005;202:1043–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zamboni DS, et al. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol. 2006;7:318–25.

    Article  CAS  PubMed  Google Scholar 

  122. Sansonetti PJ, et al. Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity. 2000;12:581–90.

    Article  CAS  PubMed  Google Scholar 

  123. Pedra JH, et al. ASC/PYCARD and caspase-1 regulate the IL-18/IFN-gamma axis during Anaplasma phagocytophilum infection. J Immunol. 2007;179:4783–91.

    Article  CAS  PubMed  Google Scholar 

  124. Aachoui Y, et al. Caspase-11 protects against bacteria that escape the vacuole. Science. 2013;339:975–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ceballos-Olvera I, Sahoo M, Miller MA, Del Barrio L, Re F. Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1beta is deleterious. PLoS Pathog. 2011;7:e1002452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tsuji NM, et al. Roles of caspase-1 in listeria infection in mice. Int Immunol. 2004;16:335–43.

    Article  CAS  PubMed  Google Scholar 

  127. Simon A, van der Meer JW. Pathogenesis of familial periodic fever syndromes or hereditary autoinflammatory syndromes. Am J Physiol Regul Integr Comp Physiol. 2007;292:R86–98.

    Article  CAS  PubMed  Google Scholar 

  128. Frantz S, et al. Targeted deletion of caspase-1 reduces early mortality and left ventricular dilatation following myocardial infarction. J Mol Cell Cardiol. 2003;35:685–94.

    Article  CAS  PubMed  Google Scholar 

  129. Schielke GP, Yang GY, Shivers BD, Betz AL. Reduced ischemic brain injury in interleukin-1 beta converting enzyme-deficient mice. J Cereb Blood Flow Metab. 1998;18:180–5.

    Article  CAS  PubMed  Google Scholar 

  130. Ona VO, et al. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature. 1999;399:263–7.

    Article  CAS  PubMed  Google Scholar 

  131. Siegmund B, Lehr HA, Fantuzzi G, Dinarello CA. IL-1 beta—converting enzyme (caspase-1) in intestinal inflammation. Proc Natl Acad Sci U S A. 2001;98:13249–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li P, et al. Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell. 1995;80:401–11.

    Article  CAS  PubMed  Google Scholar 

  133. Willingham SB, et al. Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe. 2007;2:147–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Duncan JA, et al. Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J Immunol. 2009;182:6460–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhao YO, Khaminets A, Hunn JP, Howard JC. Disruption of the toxoplasma gondii parasitophorous vacuole by IFNgamma-inducible immunity-related GTPases (IRG proteins) triggers necrotic cell death. PLoS Pathog. 2009;5:e1000288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Averette KM, et al. Anthrax lethal toxin induced lysosomal membrane permeabilization and cytosolic cathepsin release is Nlrp1b/Nalp1b-dependent. PLoS ONE. 2009;4:e7913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Holzinger D, et al. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J Leukoc Biol. 2012;92:1069–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Brinkmann V, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5.

    Article  CAS  PubMed  Google Scholar 

  139. Brinkmann V, Zychlinsky A. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol. 2007;5:577–82.

    Article  CAS  PubMed  Google Scholar 

  140. Papayannopoulos V, Zychlinsky A. NETs: a new strategy for using old weapons. Trends Immunol. 2009;30:513–21.

    Article  CAS  PubMed  Google Scholar 

  141. Fuchs TA, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176:231–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yipp BG, Kubes P. NETosis: how vital is it? Blood. 2013;122:2784–94.

    Article  CAS  PubMed  Google Scholar 

  143. Remijsen Q, et al. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 2011;18:581–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wartha F, Henriques-Normark B. ETosis: a novel cell death pathway. Sci Signal. 2008;1:pe25.

    Google Scholar 

  145. Bianchi M, et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood. 2009;114:2619–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pilsczek FH, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol. 2010;185:7413–25.

    Article  CAS  PubMed  Google Scholar 

  147. Buchanan JT, et al. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol CB. 2006;16:396–400.

    Article  CAS  PubMed  Google Scholar 

  148. Urban CF, Reichard U, Brinkmann V, Zychlinsky A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol. 2006;8:668–76.

    Article  CAS  PubMed  Google Scholar 

  149. Jaillon S, et al. The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps. J Exp Med. 2007;204:793–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mulcahy H, Charron-Mazenod L, Lewenza S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog. 2008;4:e1000213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191:677–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Saitoh T, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012;12:109–16.

    Article  CAS  PubMed  Google Scholar 

  153. Wardini AB, et al. Characterization of neutrophil extracellular traps in cats naturally infected with feline leukemia virus. J Gen Virol. 2010;91:259–64.

    Article  CAS  PubMed  Google Scholar 

  154. Ng HH, et al. Doxycycline treatment attenuates acute lung injury in mice infected with virulent influenza H3N2 virus: involvement of matrix metalloproteinases. Exp Mol Pathol. 2012;92:287–95.

    Article  CAS  PubMed  Google Scholar 

  155. Narasaraju T, et al. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol. 2011;179:199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Barletta KE, Cagnina RE, Burdick MD, Linden J, Mehrad B. Adenosine A(2B) receptor deficiency promotes host defenses against gram-negative bacterial pneumonia. Am J Respir Crit Care Med. 2012;186:1044–50.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Douda DN, Jackson R, Grasemann H, Palaniyar N. Innate immune collectin surfactant protein D simultaneously binds both neutrophil extracellular traps and carbohydrate ligands and promotes bacterial trapping. J Immunol. 2011;187:1856–65.

    Article  CAS  PubMed  Google Scholar 

  158. Li P, et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010;207:1853–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bruns S, et al. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog. 2010;6:e1000873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hosogi S, et al. Effect of inducible nitric oxide synthase on apoptosis in Candida-induced acute lung injury. Biomed Res. 2008;29:257–66.

    Article  CAS  PubMed  Google Scholar 

  161. Thomas GM, et al. Extracellular DNA traps are associated with the pathogenesis of TRALI in humans and mice. Blood. 2012;119:6335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Caudrillier A, et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest. 2012;122:2661–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Roghanian A, Sallenave JM. Neutrophil elastase (NE) and NE inhibitors: canonical and noncanonical functions in lung chronic inflammatory diseases (cystic fibrosis and chronic obstructive pulmonary disease). J Aerosol Med Pulm Drug Deliv. 2008;21:125–44.

    Article  CAS  PubMed  Google Scholar 

  164. Gupta AK, et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett. 2010;584:3193–7.

    Article  CAS  PubMed  Google Scholar 

  165. Eskelinen EL, Saftig P. Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta. 2009;1793:664–73.

    Article  CAS  PubMed  Google Scholar 

  166. Ravikumar B, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev. 2010;90:1383–435.

    Article  CAS  PubMed  Google Scholar 

  167. Shimizu S, et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol. 2004;6:1221–8.

    Article  CAS  PubMed  Google Scholar 

  168. Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol. 2008;9:1004–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Shen HM, Codogno P. Autophagic cell death: Loch Ness monster or endangered species? Autophagy. 2011;7:457–65.

    Article  CAS  PubMed  Google Scholar 

  170. Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27:107–32.

    Article  CAS  PubMed  Google Scholar 

  171. Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol. 2010;22:132–9.

    Article  CAS  PubMed  Google Scholar 

  172. Lee JW, Park S, Takahashi Y, Wang HG. The association of AMPK with ULK1 regulates autophagy. PLoS ONE. 2010;5:e15394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Filimonenko M, et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell. 2010;38:265–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Simonsen A, et al. Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. J Cell Sci. 2004;117:4239–51.

    Article  CAS  PubMed  Google Scholar 

  175. Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell. 2012;151:1256–69.

    Article  CAS  PubMed  Google Scholar 

  176. Furuta N, Fujita N, Noda T, Yoshimori T, Amano A. Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol Biol Cell. 2010;21:1001–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Xu Y, et al. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity. 2007;27:135–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V. Toll-like receptors control autophagy. EMBO J. 2008;27:1110–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Travassos LH, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol. 2010;11:55–62.

    Article  CAS  PubMed  Google Scholar 

  180. Cooney R, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med. 2010;16:90–7.

    Article  CAS  PubMed  Google Scholar 

  181. Harris J, et al. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J Biol Chem. 2011;286:9587–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Shi CS, et al. Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol. 2012;13:255–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gutierrez MG, et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119:753–66.

    Article  CAS  PubMed  Google Scholar 

  184. Harris J, et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity. 2007;27:505–17.

    Article  CAS  PubMed  Google Scholar 

  185. Singh SB, et al. Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria. Nat Cell Biol. 2010;12:1154–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Schmid D, Munz C. Innate and adaptive immunity through autophagy. Immunity. 2007;27:11–21.

    Article  CAS  PubMed  Google Scholar 

  187. Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 2012;11:709–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 2011;7:279–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Anderson CA, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet. 2011;43:246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Craddock N, et al. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature. 2010;464:713–20.

    Article  CAS  PubMed  Google Scholar 

  191. Henckaerts L, et al. Genetic variation in the autophagy gene ULK1 and risk of Crohn’s disease. Inflamm Bowel Dis. 2011;17:1392–7.

    Article  PubMed  Google Scholar 

  192. Ferwerda G, et al. Engagement of NOD2 has a dual effect on proIL-1beta mRNA transcription and secretion of bioactive IL-1beta. Eur J Immunol. 2008;38:184–91.

    Article  CAS  PubMed  Google Scholar 

  193. Plantinga TS, et al. Crohn’s disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2. Gut. 2011;60:1229–35.

    Article  CAS  PubMed  Google Scholar 

  194. Nakahira K, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12:222–30.

    Article  CAS  PubMed  Google Scholar 

  195. Angele MK, Chaudry IH. Surgical trauma and immunosuppression: pathophysiology and potential immunomodulatory approaches. Langenbeck’s Arch Surg/Deutsche Gesellschaft fur Chirurgie. 2005;390:333–41.

    Article  Google Scholar 

  196. Ni Choileain N, Redmond HP. Cell response to surgery. Arch Surg. 2006;141:1132–1140.

    Google Scholar 

  197. Ni Choileain N, Redmond HP. The immunological consequences of injury. Surg J Roy Coll Surg Edinb Irel. 2006;4:23–31.

    Google Scholar 

  198. Lenz A, Franklin GA, Cheadle WG. Systemic inflammation after trauma. Injury. 2007;38:1336–45.

    Article  PubMed  Google Scholar 

  199. Rotstein OD. Modeling the two-hit hypothesis for evaluating strategies to prevent organ injury after shock/resuscitation. J Trauma. 2003;54:S203–6.

    Article  PubMed  Google Scholar 

  200. Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006;13:816–25.

    Article  CAS  PubMed  Google Scholar 

  201. Martinon F, Tschopp J. NLRs join TLRs as innate sensors of pathogens. Trends Immunol. 2005;26:447–54.

    Article  CAS  PubMed  Google Scholar 

  202. Yoneyama M, Fujita T. Structural mechanism of RNA recognition by the RIG-I-like receptors. Immunity. 2008;29:178–81.

    Article  CAS  PubMed  Google Scholar 

  203. Hansen JD, Vojtech LN, Laing KJ. Sensing disease and danger: a survey of vertebrate PRRs and their origins. Dev Comp Immunol. 2011;35:886–97.

    Article  CAS  PubMed  Google Scholar 

  204. Girardin SE, Sansonetti PJ, Philpott DJ. Intracellular vs extracellular recognition of pathogens–common concepts in mammals and flies. Trends Microbiol. 2002;10:193–9.

    Article  CAS  PubMed  Google Scholar 

  205. Scott MJ, Chen C, Sun Q, Billiar TR. Hepatocytes express functional NOD1 and NOD2 receptors: a role for NOD1 in hepatocyte CC and CXC chemokine production. J Hepatol. 2010;53:693–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Girardin SE, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003;278:8869–72.

    Article  CAS  PubMed  Google Scholar 

  207. Hasegawa M, et al. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation. EMBO J. 2008;27:373–83.

    Article  CAS  PubMed  Google Scholar 

  208. Wen Z, Fan L, Li Y, Zou Z, Scott MJ, Xiao G, Li S, Billiar TR, Wilson MA, Shi X, Fan J. Neutrophils counteract autophagy-mediated anti-inflammatory mechanisms in alveolar macrophage: role in post-hemorrhagic shock acute lung inflammation. J Immunol 2014;193:666–677.

    Google Scholar 

  209. Wang H, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285:248–51.

    Article  CAS  PubMed  Google Scholar 

  210. Lu B, et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature. 2012;488:670–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29:139–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Wang H, Yang H, Czura CJ, Sama AE, Tracey KJ. HMGB1 as a late mediator of lethal systemic inflammation. Am J Respir Crit Care Med. 2001;164:1768–73.

    Article  CAS  PubMed  Google Scholar 

  213. Yang H, Wang H, Czura CJ, Tracey KJ. The cytokine activity of HMGB1. J Leukoc Biol. 2005;78:1–8.

    Article  CAS  PubMed  Google Scholar 

  214. Bucciarelli LG, et al. RAGE is a multiligand receptor of the immunoglobulin superfamily: implications for homeostasis and chronic disease. Cell Mol Life Sci CMLS. 2002;59:1117–28.

    Article  CAS  PubMed  Google Scholar 

  215. van Zoelen MA, et al. Receptor for advanced glycation end products is detrimental during influenza A virus pneumonia. Virology. 2009;391:265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. van Zoelen MA, et al. Role of toll-like receptors 2 and 4, and the receptor for advanced glycation end products in high-mobility group box 1-induced inflammation in vivo. Shock. 2009;31:280–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Hofmann MA, et al. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell. 1999;97:889–901.

    Article  CAS  PubMed  Google Scholar 

  218. Huttunen HJ, et al. Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem. 2000;275:40096–105.

    Article  CAS  PubMed  Google Scholar 

  219. Toure F, et al. Receptor for advanced glycation end-products (RAGE) modulates neutrophil adhesion and migration on glycoxidated extracellular matrix. Biochem J. 2008;416:255–61.

    Article  CAS  PubMed  Google Scholar 

  220. Palumbo R, et al. Src family kinases are necessary for cell migration induced by extracellular HMGB1. J Leukoc Biol. 2009;86:617–23.

    Article  CAS  PubMed  Google Scholar 

  221. Bassi R, et al. HMGB1 as an autocrine stimulus in human T98G glioblastoma cells: role in cell growth and migration. J Neurooncol. 2008;87:23–33.

    Article  CAS  PubMed  Google Scholar 

  222. Kim JY, et al. Advanced glycation end product (AGE)-induced proliferation of HEL cells via receptor for AGE-related signal pathways. Int J Oncol. 2008;33:493–501.

    CAS  PubMed  Google Scholar 

  223. Hudson BI, et al. Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem. 2008;283:34457–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Xu J, et al. Macrophage endocytosis of high-mobility group box 1 triggers pyroptosis. Cell Death Differ. 2014;21:1229–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Hansen CG, Nichols BJ. Molecular mechanisms of clathrin-independent endocytosis. J Cell Sci. 2009;122:1713–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Bashkirov PV, et al. GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell. 2008;135:1276–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Pucadyil TJ, Schmid SL. Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell. 2008;135:1263–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Roux A, Antonny B. The long and short of membrane fission. Cell. 2008;135:1163–5.

    Article  CAS  PubMed  Google Scholar 

  229. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL. Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol. 2003;5:410–21.

    Article  CAS  PubMed  Google Scholar 

  230. Sigismund S, et al. Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell. 2008;15:209–19.

    Article  CAS  PubMed  Google Scholar 

  231. Cooper RA. Surgical site infections: epidemiology and microbiological aspects in trauma and orthopaedic surgery. Int Wound J. 2013;10(Suppl 1):3–8.

    Article  PubMed  Google Scholar 

  232. Botha AJ, et al. Early neutrophil sequestration after injury: a pathogenic mechanism for multiple organ failure. J Trauma. 1995;39:411–7.

    Article  CAS  PubMed  Google Scholar 

  233. Botha AJ et al. Postinjury neutrophil priming and activation: an early vulnerable window. Surgery. 1995;118:358–364; discussion 364–355.

    Google Scholar 

  234. Fan J, Li Y, Vodovotz Y, Billiar TR, Wilson MA. Hemorrhagic shock-activated neutrophils augment TLR4 signaling-induced TLR2 upregulation in alveolar macrophages: role in hemorrhage-primed lung inflammation. Am J Physiol. Lung Cell Mol Physiol. 2006;290:L738–L746.

    Google Scholar 

  235. Fan J, et al. Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: role of HMGB1-TLR4 signaling. J Immunol. 2007;178:6573–80.

    Article  CAS  PubMed  Google Scholar 

  236. Xiang M, et al. Hemorrhagic shock activation of NLRP3 inflammasome in lung endothelial cells. J Immunol. 2011;187:4809–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Xiang M, et al. Hemorrhagic shock activates lung endothelial reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase via neutrophil NADPH oxidase. Am J Respir Cell Mol Biol. 2011;44:333–40.

    Article  CAS  PubMed  Google Scholar 

  238. Xu P, et al. Hemorrhagic shock augments Nlrp3 inflammasome activation in the lung through impaired pyrin induction. J Immunol. 2013;190:5247–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Wen Z, et al. Neutrophils counteract autophagy-mediated anti-inflammatory mechanisms in alveolar macrophage: role in posthemorrhagic shock acute lung inflammation. J Immunol. 2014;193:4623–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Jiao H, et al. Caveolin-1 Tyr14 phosphorylation induces interaction with TLR4 in endothelial cells and mediates MyD88-dependent signaling and sepsis-induced lung inflammation. J Immunol. 2013;191:6191–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Fan, J., Fan, L. (2017). Trauma, Regulated Cell Death, and Inflammation. In: Fu, X., Liu, L. (eds) Advanced Trauma and Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-10-2425-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2425-2_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2424-5

  • Online ISBN: 978-981-10-2425-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics