Skip to main content

Novel Inflammatory and Immunomodulatory Mediators in Sepsis

  • Chapter
  • First Online:
Advanced Trauma and Surgery

Abstract

Sepsis is a global problem with substantial morbidity, mortality, and health care expenditures in the U.S. and worldwide. Although we have improved understanding of the pathophysiology related to sepsis, rapid progress of research in this growing field requires a more nuanced approach to matching pathophysiology to therapeutic options against sepsis in a timely manner. Identification of novel pathophysiological events and the development of drugs by targeting novel inflammatory and immunomodulatory molecules have opened up different channels for attacking sepsis. Our current chapter encompasses a comprehensive, though by no means complete, summary of novel inflammatory and immunomodulatory mediators in sepsis via screening of current literature resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ICU:

Intensive care unit

CARS:

Compensatory anti-inflammatory response syndrome

HLA:

Human leukocyte antigen

TNF:

Tumor necrosis factor

LPS:

Lipopolysaccharide

IL:

Interleukin

MD2-TLR4:

Myeloid differentiation factor 2-toll-like receptor 4

TGF:

Transforming growth factor

SCID:

Severe combined immunodeficiency

BCL-2:

B cell lymphoma-2

Bim:

Bcl-2 interacting mediator of cell death

Puma:

P53 upregulated modulator of apoptosis

IFN:

Interferon

LFA:

Lymphocyte function associated antigen

VLA:

Very late antigen

NK:

Natural killer

PD-L1:

Programmed cell death receptor ligand-1

CTLA:

Cytotoxic T lymphocyte associated protein

Th:

T helper

CLP:

Cecal ligation and puncture

MFG-E8:

Milk fat globule-EGF-factor VIII

DCs:

Dendritic cells

IL-22BP:

IL-22 binding protein

NFκB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

MAPK:

Mitogen-activated protein kinases

VCAM:

Vascular endothelial cell adhesion molecule

AP-1:

Activator protein-1

IL-1RAcP:

IL-1 receptor accessory protein

IL-1Rrp2:

IL-1 receptor related protein-2

GM-CSF:

Granulocyte-macrophage-colony-stimulating factor

sTREM-1:

Soluble triggering receptor expressed on myeloid cells-1

I/R:

Ischemia reperfusion

OPN:

Osteopontin

BSP-I:

Bone sialoprotein-I

ETA-1:

Early T lymphocyte activation-1

SPP-1:

Secreted phosphoprotein-1

ECM:

Extracellular matrix

ALI:

Acute lung injury

PD-1:

Programmed death-1

APCs:

Antigen presenting cells

BTLA:

B and T lymphocyte attenuator

GRAIL:

Gene related to anergy in lymphocytes

DAMP:

Damage-associated molecular patterns

HMGB1:

High mobility group box 1

RAGE:

Receptor for advanced glycation end-products

CIRP:

Cold-inducible RNA-binding protein

S1P:

Sphingosine-1-phosphate

LXs:

Lipoxins

ICAM-1:

Intercellular adhesion molecule-1

PBEF:

Pre-B cell colony-enhancing factor

GHSR:

Growth hormone secretagogue receptor

AM:

Adrenomedullin

AMBP-1:

AM binding protein-1

ET-1:

Endothelin-1

PS:

Phosphatidylserine

MPO:

Myeloperoxidase

MSP68:

MFG-E8-derived short peptides 68

References

  1. Lever A, Mackenzie I. Sepsis: definition, epiderhiology, and diagnosis. Br Med J. 2007;335(7625):879–83.

    Article  CAS  Google Scholar 

  2. Majno G. The ancient riddle of sigma-eta-psi-iota-sigma (SEPSIS). J Infect Dis. 1991;163(5):937–45.

    Article  CAS  PubMed  Google Scholar 

  3. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(9):840–51.

    Article  CAS  PubMed  Google Scholar 

  4. Funk DJ, Parrillo JE, Kumar A. Sepsis and septic shock: a history. Crit Care Clin. 2009;25(1):83–101.

    Article  PubMed  Google Scholar 

  5. Aziz M, Jacob A, Yang WL, et al. Current trends in inflammatory and immunomodulatory mediators in sepsis. J Leukoc Biol. 2013;93(3):329–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Adhikari NKJ, Fowler RA, Bhagwanjee S, et al. Critical care 1 critical care and the global burden of critical illness in adults. Lancet. 2010;376(9749):1339–46.

    Article  PubMed  Google Scholar 

  8. Vincent J-L, Marshall JC, Namendys-Silva SA, et al. Assessment of the worldwide burden of critical illness: the intensive care over nations (ICON) audit. Lancet Respir Med. 2014;2(5):380–6.

    Article  PubMed  Google Scholar 

  9. Martin GS, Mannino DM, Moss M. The effect of age on the development and outcome of adult sepsis. Crit Care Med. 2006;34(1):15–21.

    Article  PubMed  Google Scholar 

  10. Deutschman CS, Tracey KJ. Sepsis: current dogma and new perspectives. Immunity. 2014;40(4):464–76.

    Article  CAS  Google Scholar 

  11. Lagu T, Rothberg MB, Shieh MS, et al. Hospitalizations, costs, and outcomes of severe sepsis in the United States 2003 to 2007. Crit Care Med. 2012;40(3):754–61.

    Article  PubMed  Google Scholar 

  12. Boomer JS, Green JM, Hotchkiss RS. The changing immune system in sepsis is individualized immuno-modulatory therapy the answer? Virulence. 2014;5(1):45–56.

    Article  PubMed  Google Scholar 

  13. Hotchkiss RS, Karl IE. Medical progress: the pathophysiology and treatment of sepsis. N Engl J Med. 2003;348(2):138–50.

    Article  CAS  PubMed  Google Scholar 

  14. Hutchins NIA, Unsinger J, Hotchkiss RS, et al. Special issue: sepsis the new normal: immunomodulatory agents against sepsis immune suppression. Trends Mol Med. 2014;20(4):224–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Frazier WJ, Hall MW. Immunoparalysis and adverse outcomes from critical illness. Pediatr Clin North Am. 2008;55(3):647–68.

    Google Scholar 

  16. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang H, Ma S. The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. Am J Emerg Med. 2008;26(6):711–5.

    Article  PubMed  Google Scholar 

  18. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13(3):260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang BM, Huang SJ, McLean AS. Genome-wide transcription profiling of human sepsis: a systematic review. Crit Care. 2010;14(6).

    Google Scholar 

  20. Tracey KJ, Fong Y, Hesse DG, et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature. 1987;330(6149):662–4.

    Article  CAS  PubMed  Google Scholar 

  21. Fisher CJ, Dhainaut JFA, Opal SM, et al. Recombinant human interleukin-1 receptor antagonist in the treatment of patients with sepsis syndrome—results from a randomized, double-blind, placebo-controlled trial. JAMA-J Am Med Assoc. 1994;271(23):1836–43.

    Article  Google Scholar 

  22. Christaki E, Anyfanti P, Opal SM. Immunomodulatory therapy for sepsis: an update. Expert Review of Anti-Infective Ther. 2011;9(11):1013–33.

    Article  CAS  Google Scholar 

  23. Opal SM, Laterre PF, Francois B, et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis the ACCESS randomized trial. JAMA-J Am Med Assoc. 2013;309(11):1154–62.

    Article  CAS  Google Scholar 

  24. Bernard GR, Vincent JL, Laterre P, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344(10):699–709.

    Article  CAS  PubMed  Google Scholar 

  25. Vincent JL, Bernard GR, Beale R, et al. Dyotyecogin alfa (activated) treatment in severe sepsis from the global open-label trial ENHANCE: further evidence for survival and safety and implications for early treatment. Crit Care Med. 2005;33(10):2266–77.

    Article  CAS  PubMed  Google Scholar 

  26. Abraham E, Laterre P, Garg R, et al. Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med. 2005;353(13):1332–41.

    Article  CAS  PubMed  Google Scholar 

  27. Nadel S, Goldstein B, Williams MD, et al. Drotrecogin alfa (activated) in children with severe sepsis: a multicentre phase III randomised controlled trial. Lancet. 2007;369(9564):836–43.

    Article  CAS  PubMed  Google Scholar 

  28. Ward PA. What’s new in the quagmire of sepsis? Trends Mol Med. 2014;20(4):189–90.

    Article  PubMed  Google Scholar 

  29. Weber GF, Chousterman BG, He S, et al. Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science. 2015;347(6227):1260–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Puel A, Ziegler SF, Buckley RH, et al. Defective IL7R expression in T-B+NK+severe combined immunodeficiency. Nat Genet. 1998;20(4):394–7.

    Article  CAS  PubMed  Google Scholar 

  31. Boomer JS, To K, Chang KC, et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA-J Am Med Assoc. 2011;306(23):2594–605.

    Article  CAS  Google Scholar 

  32. Chetoui N, Boisvert M, Gendron S, et al. Interleukin-7 promotes the survival of human CD4+ effector/memory T cells by up-regulating Bcl-2 proteins and activating the JAK/STAT signalling pathway. Immunology. 2010;130(3):418–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Unsinger J, McGlynn M, Kasten KR, et al. IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis. J Immunol. 2010;184(7):3768–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sportes C, Hakim FT, Memon SA, et al. Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med. 2008;205(7):1701–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mackall CL, Fry TJ, Gress RE. Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol. 2011;11(5):330–42.

    Article  CAS  PubMed  Google Scholar 

  36. Inoue S, Unsinger J, Davis CG, et al. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis. J Immunol. 2010;184(3):1401–9.

    Article  CAS  PubMed  Google Scholar 

  37. Waldmann TA, Lugli E, Roederer M, et al. Safety (toxicity), pharmacokinetics, immunogenicity, and impact on elements of the normal immune system of recombinant human IL-15 in rhesus macaques. Blood. 2011;117(18):4787–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu P, Steel JC, Zhang M, et al. Simultaneous blockade of multiple immune system inhibitory checkpoints enhances antitumor activity mediated by interleukin-15 in a murine metastatic colon carcinoma model. Clin Cancer Res. 2010;16(24):6019–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bosmann M, Ward PA. Therapeutic potential of targeting IL-17 and IL-23 in sepsis. Clin Transl Med. 2012;1(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jin W, Dong C. IL-17 cytokines in immunity and inflammation. Emerg Microbes Infect. 2013;2.

    Google Scholar 

  41. Cen C, Aziz M, Yang WL, et al. Milk fat globule-epidermal growth factor-factor VIII downregulates interleukin-17 expression in sepsis by modulating STAT3 activation. Surgery. 2016;159(2):560–9.

    Article  PubMed  Google Scholar 

  42. Flierl MA, Rittirsch D, Gao HW, et al. Adverse functions of IL-17A in experimental sepsis. Faseb J. 2008;22(7):2198–205.

    Article  CAS  PubMed  Google Scholar 

  43. Li JB, Zhang Y, Lou JS, et al. Neutralisation of peritoneal IL-17A markedly improves the prognosis of severe septic mice by decreasing neutrophil infiltration and proinflammatory cytokines. PLoS ONE. 2012;7(10):8.

    Google Scholar 

  44. Xie MH, Aggarwal S, Ho WH, et al. Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J Biol Chem. 2000;275(40):31335–9.

    Article  CAS  PubMed  Google Scholar 

  45. Moore KW, Malefyt RD, Coffman RL, et al. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765.

    Article  CAS  PubMed  Google Scholar 

  46. Bingold TM, Ziesche E, Scheller B, et al. Interleukin-22 detected in patients with abdominal sepsis. Shock. 2010;34(4):337–40.

    Article  CAS  PubMed  Google Scholar 

  47. Weber GF, Schlautkoetter S, Kaiser-Moore S, et al. Inhibition of interleukin-22 attenuates bacterial load and organ failure during acute polymicrobial sepsis. Infect Immun. 2007;75(4):1690–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wojno ED, Hunter CA. New directions in the basic and translational biology of interleukin-27. Trends Immunol. 2012;33(2):91–7.

    Article  CAS  PubMed  Google Scholar 

  49. Hanna WJ, Berrens Z, Langner T, et al. Interleukin-27: a novel biomarker in predicting bacterial infection among the critically ill. Crit Care. 2015;19:378.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cao J, Xu F, Lin S, et al. IL-27 controls sepsis-induced impairment of lung antibacterial host defence. Thorax. 2014;69(10):926–37.

    Article  PubMed  Google Scholar 

  51. Stumhofer JS, Hunter CA. Advances in understanding the anti-inflammatory properties of IL-27. Immunol Lett. 2008;117(2):123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Awasthi A, Carrier Y, Peron JP, et al. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol. 2007;8(12):1380–9.

    Article  CAS  PubMed  Google Scholar 

  53. Baekkevold ES, Roussigne M, Yamanaka T, et al. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am J Pathol. 2003;163(1):69–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23(5):479–90.

    Article  CAS  PubMed  Google Scholar 

  55. Chackerian AA, Oldham ER, Murphy EE, et al. IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. J Immunol. 2007;179(4):2551–5.

    Article  CAS  PubMed  Google Scholar 

  56. Ali S, Huber M, Kollewe C, et al. IL-1 receptor accessory protein is essential for IL-33-induced activation of T lymphocytes and mast cells. Proc Natl Acad Sci U S A. 2007;104(47):18660–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Iwahana H, Yanagisawa K, Ito-Kosaka A, et al. Different promoter usage and multiple transcription initiation sites of the interleukin-1 receptor-related human ST2 gene in UT-7 and TM12 cells. Eur J Biochem. 1999;264(2):397–406.

    Article  CAS  PubMed  Google Scholar 

  58. Hoogerwerf JJ, Tanck MW, van Zoelen MA, et al. Soluble ST2 plasma concentrations predict mortality in severe sepsis. Intensive Care Med. 2010;36(4):630–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sha X, Meng S, Li X, et al. Interleukin-35 inhibits endothelial cell activation by suppressing MAPK-AP-1 pathway. J Biol Chem. 2015;290(31):19307–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cao J, Xu F, Lin S, et al. IL-35 is elevated in clinical and experimental sepsis and mediates inflammation. Clin Immunol. 2015;161(2):89–95.

    Article  CAS  PubMed  Google Scholar 

  61. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117(14):3720–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Towne JE, Garka KE, Renshaw BR, et al. Interleukin (IL)-1F6, IL-1F8, and IL-1F9 signal through IL-1Rrp2 and IL-1RAcP to activate the pathway leading to NF-kappa B and MAPKs. J Biol Chem. 2004;279(14):13677–88.

    Article  CAS  PubMed  Google Scholar 

  63. Vigne S, Palmer G, Martin P, et al. IL-36 signaling amplifies Th1 responses by enhancing proliferation and Th1 polarization of naive CD4(+) T cells. Blood. 2012;120(17):3478–87.

    Article  CAS  PubMed  Google Scholar 

  64. Scheiermann P, Bachmann M, Haerdle L, et al. Application of IL-36 receptor antagonist weakens CCL20 expression and impairs recovery in the late phase of murine acetaminophen-induced liver injury. Sci Rep. 2015;5.

    Google Scholar 

  65. van de Veerdonk FL, Stoeckman AK, Wu G, et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proc Natl Acad Sci USA. 2012;109(8):3001–5.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Boraschi D, Lucchesi D, Hainzl S, et al. IL-37: a new anti-inflammatory cytokine of the IL-1 family. Eur Cytokine Netw. 2011;22(3):127–47.

    CAS  PubMed  Google Scholar 

  67. Nold MF, Nold-Petry CA, Zepp JA, et al. IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol. 2010;11(11):1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol. 2008;8(7):533–44.

    Article  CAS  PubMed  Google Scholar 

  69. Flohe S, Borgermann J, Dominguez FE, et al. Influence of granulocyte-macrophage colony-stimulating factor (GM-CSF) on whole blood endotoxin responsiveness following trauma, cardiopulmonary bypass, and severe sepsis. Shock. 1999;12(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  70. Rauch PJ, Chudnovskiy A, Robbins CS, et al. Innate response activator B cells protect against microbial sepsis. Science. 2012;335(6068):597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nierhaus A, Montag B, Timmler N, et al. Reversal of immunoparalysis by recombinant human granulocyte-macrophage colony-stimulating factor in patients with severe sepsis. Intensive Care Med. 2003;29(4):646–51.

    Article  PubMed  Google Scholar 

  72. Meisel C, Schefold JC, Pschowski R, et al. Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression a double-blind, randomized, placebo-controlled multicenter trial. Am J Respir Crit Care Med. 2009;180(7):640–8.

    Article  CAS  PubMed  Google Scholar 

  73. Gibot S. Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia and severe sepsis. Semin Respir Crit Care Med. 2006;27(1):29–33.

    Article  PubMed  Google Scholar 

  74. Gibot S, Massin F, Alauzet C, et al. Effects of the TREM-1 pathway modulation during mesenteric ischemia-reperfusion in rats. Crit Care Med. 2008;36(2):504–10.

    Article  CAS  PubMed  Google Scholar 

  75. Knapp S, Gibot S, de Vos A, et al. Cutting edge: expression patterns of surface and soluble triggering receptor expressed on myeloid cells-1 in human endotoxemia. J Immunol. 2004;173(12):7131–4.

    Article  CAS  PubMed  Google Scholar 

  76. Bouchon A, Facchetti F, Weigand MA, et al. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature. 2001;410(6832):1103–7.

    Article  CAS  PubMed  Google Scholar 

  77. Wang F, Liu S, Wu S, et al. Blocking TREM-1 signaling prolongs survival of mice with Pseudomonas aeruginosa induced sepsis. Cell Immunol. 2012;272(2):251–8.

    Article  CAS  PubMed  Google Scholar 

  78. Lund SA, Giachelli CM, Scatena M. The role of osteopontin in inflammatory processes. J Cell Commun Signal. 2009;3(3–4):311–22.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bayless KJ, Davis GE. Identification of dual alpha 4beta1 integrin binding sites within a 38 amino acid domain in the N-terminal thrombin fragment of human osteopontin. J Biol Chem. 2001;276(16):13483–9.

    Article  CAS  PubMed  Google Scholar 

  80. Nyström T, Dunér P, Hultgårdh-Nilsson A. A constitutive endogenous osteopontin production is important for macrophage function and differentiation. Exp Cell Res. 2007;313(6):1149–60.

    Article  CAS  PubMed  Google Scholar 

  81. Koh A, da Silva AP, Bansal AK, et al. Role of osteopontin in neutrophil function. Immunology. 2007;122(4):466–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shinohara ML, Jansson M, Hwang ES, et al. T-bet-dependent expression of osteopontin contributes to T cell polarization. Proc Natl Acad Sci U S A. 2005;102(47):17101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Agnholt J, Kelsen J, Schack L, et al. Osteopontin, a protein with cytokine-like properties, is associated with inflammation in Crohn’s disease. Scand J Immunol. 2007;65(5):453–60.

    Article  CAS  PubMed  Google Scholar 

  84. El-Tanani MK, Campbell FC, Kurisetty V, et al. The regulation and role of osteopontin in malignant transformation and cancer. Cytokine Growth Factor Rev. 2006;17(6):463–74.

    Article  CAS  PubMed  Google Scholar 

  85. Vaschetto R, Nicola S, Olivieri C, et al. Serum levels of osteopontin are increased in SIRS and sepsis. Intensive Care Med. 2008;34(12):2176–84.

    Article  CAS  PubMed  Google Scholar 

  86. Fortis S, Khadaroo RG, Haitsma JJ, et al. Osteopontin is associated with inflammation and mortality in a mouse model of polymicrobial sepsis. Acta Anaesthesiol Scand. 2015;59(2):170–5.

    Article  CAS  PubMed  Google Scholar 

  87. Hirano Y, Aziz M, Yang WL, et al. Neutralization of osteopontin attenuates neutrophil migration in sepsis-induced acute lung injury. Crit Care. 2015;19(1):53.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang X, Venet F, Wang YL, et al. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc Natl Acad Sci U S A. 2009;106(15):6303–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Brahmamdam P, Inoue S, Unsinger J, et al. Delayed administration of anti-PD-1 antibody reverses immune dysfunction and improves survival during sepsis. J Leukoc Biol. 2010;88(2):233–40.

    Article  CAS  PubMed  Google Scholar 

  92. Chang KC, Burnham CA, Compton SM, et al. Blockade of the negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondary fungal sepsis. Crit Care. 2013;17(3):R85.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Guignant C, Lepape A, Huang X, et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit Care. 2011;15(2):R99.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Adler G, Steeg C, Pfeffer K, et al. B and T lymphocyte attenuator restricts the protective immune response against experimental malaria. J Immunol. 2011;187(10):5310–9.

    Article  CAS  PubMed  Google Scholar 

  95. Sun Y, Brown NK, Ruddy MJ, et al. B and T lymphocyte attenuator tempers early infection immunity. J Immunol. 2009;183(3):1946–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shubin NJ, Chung CS, Heffernan DS, et al. BTLA expression contributes to septic morbidity and mortality by inducing innate inflammatory cell dysfunction. J Leukoc Biol. 2012;92(3):593–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kobayashi Y, Iwata A, Suzuki K, et al. B and T lymphocyte attenuator inhibits LPS-induced endotoxic shock by suppressing Toll-like receptor 4 signaling in innate immune cells. Proc Natl Acad Sci U S A. 2013;110(13):5121–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Inoue S, Bo L, Bian J, et al. Dose-dependent effect of anti-CTLA-4 on survival in sepsis. Shock. 2011;36(1):38–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chang KC, Burnham CA, Compton SM, et al. Blockade ofthe negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondary fungal sepsis. Crit Care. 2013;17(3):14.

    Google Scholar 

  101. Anandasabapathy N, Ford GS, Bloom D, et al. GRAIL: An E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4(+) T cells. Immunity. 2003;18(4):535–47.

    Article  CAS  PubMed  Google Scholar 

  102. Aziz M, Yang W-L, Matsuo S, et al. Upregulation of GRAIL is associated with impaired CD4 T cell proliferation in sepsis. J Immunol. 2014;192(5):2305–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang H, Yang H, Czura CJ, et al. HMGB1 as a late mediator of lethal systemic inflammation. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1768–73.

    Article  CAS  PubMed  Google Scholar 

  104. Huang W, Tang Y, Li L. HMGB1, a potent proinflammatory cytokine in sepsis. Cytokine. 2010;51(2):119–26.

    Article  CAS  PubMed  Google Scholar 

  105. Yang H, Tracey KJ. Targeting HMGB1 in inflammation. Biochim Biophys Acta. 2010;1799(1–2):149–56.

    Article  CAS  PubMed  Google Scholar 

  106. Wang H, Bloom O, Zhang M, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285(5425):248–51.

    Article  CAS  PubMed  Google Scholar 

  107. Sappington PL, Yang R, Yang H, et al. HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. Gastroenterology. 2002;123(3):790–802.

    Article  CAS  PubMed  Google Scholar 

  108. Wang H, Liao H, Ochani M, et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med. 2004;10(11):1216–21.

    Article  CAS  PubMed  Google Scholar 

  109. Ulloa L, Ochani M, Yang H, et al. Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci U S A. 2002;99(19):12351–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kawahara K, Hashiguchi T, Masuda K, et al. Mechanism of HMGB1 release inhibition from RAW264.7 cells by oleanolic acid in Prunus mume Sieb. et Zucc. Int J Mol Med. 2009;23(5):615–20.

    CAS  PubMed  Google Scholar 

  111. Kato S, Hussein MH, Kakita H, et al. Edaravone, a novel free radical scavenger, reduces high-mobility group box 1 and prolongs survival in a neonatal sepsis model. Shock. 2009;32(6):586–92.

    Article  CAS  PubMed  Google Scholar 

  112. Li W, Ashok M, Li J, et al. A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1. PLoS ONE. 2007;2(11):e1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Qiang X, Yang WL, Wu R, et al. Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nat Med. 2013;19(11):1489–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nishiyama H, Higashitsuji H, Yokoi H, et al. Cloning and characterization of human CIRP (cold-inducible RNA-binding protein) cDNA and chromosomal assignment of the gene. Gene. 1997;204(1–2):115–20.

    Article  CAS  PubMed  Google Scholar 

  115. Zhou Y, Dong H, Zhong Y, et al. The cold-inducible RNA-binding protein (CIRP) level in peripheral blood predicts sepsis outcome. PLoS ONE. 2015;10(9):e0137721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Spiegel S, Milstien S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol. 2011;11(6):403–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Puneet P, Yap CT, Wong L, et al. SphK1 regulates proinflammatory responses associated with endotoxin and polymicrobial sepsis. Science. 2010;328(5983):1290–4.

    Article  CAS  PubMed  Google Scholar 

  118. Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008;8(5):349–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Park CK, Xu ZZ, Liu T, et al. Resolvin D2 is a potent endogenous inhibitor for transient receptor potential subtype V1/A1, inflammatory pain, and spinal cord synaptic plasticity in mice: distinct roles of resolvin D1, D2, and E1. J Neurosci. 2011;31(50):18433–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Spite M, Norling LV, Summers L, et al. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature. 2009;461(7268):1287–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chiang N, Arita M, Serhan CN. Anti-inflammatory circuitry: lipoxin, aspirin-triggered lipoxins and their receptor ALX. Prostaglandins Leukot Essent Fatty Acids. 2005;73(3–4):163–77.

    Article  CAS  PubMed  Google Scholar 

  122. Walker J, Dichter E, Lacorte G, et al. Lipoxin a4 increases survival by decreasing systemic inflammation and bacterial load in sepsis. Shock. 2011;36(4):410–6.

    Article  CAS  PubMed  Google Scholar 

  123. Pang SS, Le YY. Role of resistin in inflammation and inflammation-related diseases. Cell Mol Immunol. 2006;3(1):29–34.

    CAS  PubMed  Google Scholar 

  124. Sundén-Cullberg J, Nyström T, Lee ML, et al. Pronounced elevation of resistin correlates with severity of disease in severe sepsis and septic shock. Crit Care Med. 2007;35(6):1536–42.

    Article  CAS  PubMed  Google Scholar 

  125. Lago F, Dieguez C, Gómez-Reino J, et al. Adipokines as emerging mediators of immune response and inflammation. Nat Clin Pract Rheumatol. 2007;3(12):716–24.

    Article  CAS  PubMed  Google Scholar 

  126. Yokota T, Oritani K, Takahashi I, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood. 2000;96(5):1723–32.

    CAS  PubMed  Google Scholar 

  127. Li S, Bao HG, Han L, et al. Effects of adiponectin on mortality and its mechanism in a sepsis mouse model. J Invest Surg. 2012;25(4):214–9.

    Article  PubMed  Google Scholar 

  128. Salman B, Yılmaz TU, Tezcaner T, et al. Exogenous recombinant adiponectin improves survival in experimental abdominal sepsis. Balkan Med J. 2014;31(3):244–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tilg H, Wolf AM. Adiponectin: a key fat-derived molecule regulating inflammation. Expert Opin Ther Targets. 2005;9(2):245–51.

    Article  CAS  PubMed  Google Scholar 

  130. Luk T, Malam Z, Marshall JC. Pre-B cell colony-enhancing factor (PBEF)/visfatin: a novel mediator of innate immunity. J Leukoc Biol. 2008;83(4):804–16.

    Article  CAS  PubMed  Google Scholar 

  131. Moschen AR, Kaser A, Enrich B, et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol. 2007;178(3):1748–58.

    Article  CAS  PubMed  Google Scholar 

  132. Jia SH, Li Y, Parodo J, et al. Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest. 2004;113(9):1318–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cekmez F, Canpolat FE, Cetinkaya M, et al. Diagnostic value of resistin and visfatin, in comparison with C-reactive protein, procalcitonin and interleukin-6 in neonatal sepsis. Eur Cytokine Netw. 2011;22(2):113–7.

    CAS  PubMed  Google Scholar 

  134. Inui A, Asakawa A, Bowers CY, et al. Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organ. FASEB J. 2004;18(3):439–56.

    Article  CAS  PubMed  Google Scholar 

  135. Wu R, Dong W, Zhou M, et al. Ghrelin attenuates sepsis-induced acute lung injury and mortality in rats. Am J Respir Crit Care Med. 2007;176(8):805–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cheyuo C, Jacob A, Wang P. Ghrelin-mediated sympathoinhibition and suppression of inflammation in sepsis. Am J Physiol Endocrinol Metab. 2012;302(3):E265–72.

    Article  CAS  PubMed  Google Scholar 

  137. Shah KG, Wu R, Jacob A, et al. Human ghrelin ameliorates organ injury and improves survival after radiation injury combined with severe sepsis. Mol Med. 2009;15(11–12):407–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Jacob A, Shah KG, Wu R, et al. Ghrelin as a novel therapy for radiation combined injury. Mol Med. 2010;16(3–4):137–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Kitamura K, Kangawa K, Kawamoto M, et al. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. 1993. Biochem Biophys Res Commun. 2012;425(3):548–55.

    Google Scholar 

  140. Nishio K, Akai Y, Murao Y, et al. Increased plasma concentrations of adrenomedullin correlate with relaxation of vascular tone in patients with septic shock. Crit Care Med. 1997;25(6):953–7.

    Article  CAS  PubMed  Google Scholar 

  141. Fujioka S. Increased plasma concentration of adrenomedullin during and after major surgery. Surg Today. 2001;31(7):575–9.

    Article  CAS  PubMed  Google Scholar 

  142. Yang J, Wu R, Zhou M, et al. Human adrenomedullin and its binding protein ameliorate sepsis-induced organ injury and mortality in jaundiced rats. Peptides. 2010;31(5):872–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wu Z, Lauer TW, Sick A, et al. Oxidative stress modulates complement factor H expression in retinal pigmented epithelial cells by acetylation of FOXO3. J Biol Chem. 2007;282(31):22414–25.

    Article  CAS  PubMed  Google Scholar 

  144. Lukiw WJ, Zhao Y, Cui JG. An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. J Biol Chem. 2008;283(46):31315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wu R, Zhou M, Wang P. Adrenomedullin and adrenomedullin binding protein-1 downregulate TNF-alpha in macrophage cell line and rat Kupffer cells. Regul Pept. 2003;112(1–3):19–26.

    Article  CAS  PubMed  Google Scholar 

  146. Saito Y, Nakagawa C, Uchida H, et al. Adrenomedullin suppresses fMLP-induced upregulation of CD11b of human neutrophils. Inflammation. 2001;25(3):197–201.

    Article  CAS  PubMed  Google Scholar 

  147. Kedzierski RM, Yanagisawa M. Endothelin system: the double-edged sword in health and disease. Annu Rev Pharmacol Toxicol. 2001;41:851–76.

    Article  CAS  PubMed  Google Scholar 

  148. Guarda E, Katwa LC, Myers PR, et al. Effects of endothelins on collagen turnover in cardiac fibroblasts. Cardiovasc Res. 1993;27(12):2130–4.

    Article  CAS  PubMed  Google Scholar 

  149. Tschaikowsky K, Sägner S, Lehnert N, et al. Endothelin in septic patients: effects on cardiovascular and renal function and its relationship to proinflammatory cytokines. Crit Care Med. 2000;28(6):1854–60.

    Article  CAS  PubMed  Google Scholar 

  150. Piechota M, Banach M, Irzmanski R, et al. Plasma endothelin-1 levels in septic patients. J Intensive Care Med. 2007;22(4):232–9.

    Article  PubMed  Google Scholar 

  151. Vemulapalli S, Chiu PJ, Rivelli M, et al. Modulation of circulating endothelin levels in hypertension and endotoxemia in rats. J Cardiovasc Pharmacol. 1991;18(6):895–903.

    Article  CAS  PubMed  Google Scholar 

  152. Ruetten H, Thiemermann C. Effect of selective blockade of endothelin ETB receptors on the liver dysfunction and injury caused by endotoxaemia in the rat. Br J Pharmacol. 1996;119(3):479–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Iskit AB, Sungur A, Gedikoglu G, et al. The effects of bosentan, aminoguanidine and L-canavanine on mesenteric blood flow, spleen and liver in endotoxaemic mice. Eur J Pharmacol. 1999;379(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  154. Aziz M, Jacob A, Matsuda A, et al. Review: milk fat globule-EGF factor 8 expression, function and plausible signal transduction in resolving inflammation. Apoptosis. 2011;16(11):1077–86.

    Article  CAS  PubMed  Google Scholar 

  155. Hanayama R, Tanaka M, Miwa K, et al. Identification of a factor that links apoptotic cells to phagocytes. Nature. 2002;417(6885):182–7.

    Article  CAS  PubMed  Google Scholar 

  156. Matsuda A, Jacob A, Wu R, et al. Milk fat globule-EGF factor VIII in sepsis and ischemia-reperfusion injury. Mol Med. 2011;17(1–2):126–33.

    CAS  PubMed  Google Scholar 

  157. Miksa M, Wu R, Dong W, et al. Dendritic cell-derived exosomes containing milk fat globule epidermal growth factor-factor VIII attenuate proinflammatory responses in sepsis. Shock. 2006;25(6):586–93.

    Article  CAS  PubMed  Google Scholar 

  158. Aziz M, Matsuda A, Yang WL, et al. Milk fat globule-epidermal growth factor-factor 8 attenuates neutrophil infiltration in acute lung injury via modulation of CXCR2. J Immunol. 2012;189(1):393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cui T, Miksa M, Wu R, et al. Milk fat globule epidermal growth factor 8 attenuates acute lung injury in mice after intestinal ischemia and reperfusion. Am J Respir Crit Care Med. 2010;181(3):238–46.

    Article  CAS  PubMed  Google Scholar 

  160. Yang WL, Sharma A, Zhang F, et al. Milk fat globule epidermal growth factor-factor 8-derived peptide attenuates organ injury and improves survival in sepsis. Crit Care. 2015;19:375.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Aziz M, Jacob A, Matsuda A, et al. Pre-treatment of recombinant mouse MFG-E8 downregulates LPS-induced TNF-α production in macrophages via STAT3-mediated SOCS3 activation. PLoS ONE. 2011;6(11):e27685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yang WL, Ma G, Zhou M, et al. Combined administration of human ghrelin and human growth hormone attenuates organ injury and improves survival in aged septic rats. Mol Med. 2016;22:124–135.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH) grants R01 GM053008 and R01 GM057468 (PW). The funders had no role in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Cen, C., Aziz, M., Wang, P. (2017). Novel Inflammatory and Immunomodulatory Mediators in Sepsis. In: Fu, X., Liu, L. (eds) Advanced Trauma and Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-10-2425-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2425-2_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2424-5

  • Online ISBN: 978-981-10-2425-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics