Skip to main content

Estimated Model-Based Sliding Mode Controller for an Active Exoskeleton Robot

  • Chapter
  • First Online:
Applications of Sliding Mode Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 79))

Abstract

This paper presents a new design of a robot elbow rehabilitation: Wireless Remote Control Arm exoskeleton (WRCAE). The robot is designed for the upper limb therapy. The developed system is an exoskeleton with two degrees of freedom that can be used for the treatment, evaluation and reinforcement. The exoskeleton actuates the both movements: flexion/extension for the elbow and pronation/supination for the forearm. Angles limits (max and min) should be introduced by the physiotherapist through a Human-Machine Interface (HMI). Desired angles of the both movements (elbow flexion/extension or forearm pronation/supination) are sent remotely via the ZigBee protocol (xbee-pro communication). A kinematic model has been developed based on Denavit–Hartenberg approach to make first tests. A sliding mode robust law control has been implemented. A kinect camera was built to detect different measures of flexion/extension and send feedback to the controller. The Lyapunov-based approach has been used to establish the system asymptotic stability. Experimental results are provided to demonstrate performances of the developed robot of upper limb remote rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allington, J., Spencer, S. J., Klein, J., Buell, M., Reinkensmeyer, D. J., & Bobrow, J. (2011). Supinator Extender (SUE): a pneumatically actuated robot for forearm/wrist rehabilitation after stroke. Conference Proceedings of the IEEE Engineering in Medicine and Biology Society (pp. 1579–1582).

    Google Scholar 

  • Bovolenta, F., Sale, P., Dall-Armi, V., Clerici, P., & Franceschini, M. (2011). Robot-aided therapy for upper limbs in patients with stroke-related lesions. Brief report of a clinical experience. Journal of NeuroEngineering and Rehabilitation, 8, 18.

    Google Scholar 

  • Casellato, C., Pedrocchi, A., Zorzi, G., Vernisse, L., Ferrigno, G., & Nardocci, N. (2013). EMG-based visual-haptic biofeedback: A tool to improve motor control in children with primary dystonia. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(3), 474–480.

    Article  Google Scholar 

  • Cheng, H. S., Ju, M. S., & Lin, C. C. K. (2003). Improving elbow torque output of stroke patients with assistive torque controlled by EMG signals. Journal of Biomechanical Engineering, 125(6), 881–886.

    Article  Google Scholar 

  • Cozens, J. A. (1999). Robotic assistance of an active upper limb exercise in neurologically impaired patients. IEEE Transactions on Rehabilitation Engineering, 7(2), 254–256.

    Article  Google Scholar 

  • Culmer, P. R., Jackson, A. E., Makower, S. G., Cozens, J. A., Levesley, M. C., Mon-Williams, M., et al. (2011). A novel robotic system for quantifying arm kinematics and kinetics: Description and evaluation in therapist-assisted passive arm movements post-stroke. Journal of Neuroscience Methods, 197(2), 259–269.

    Article  Google Scholar 

  • Feys, H., Weerdt, W. D., Verbeke, G., Steck, G. C., Capiau, C., Kiekens, C., et al. (2004). Early and repetitive stimulation of the arm can substantially improve the long-term outcome after stroke: A 5-year follow-up study of a randomized trial. Stroke, 35(4), 924–929.

    Article  Google Scholar 

  • Gijbels, D., Lamers, I., Kerkhofs, L., Alders, G., Knippenberg, E., & Feys, P. (2011). The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: A pilot study. Journal of NeuroEngineering and Rehabilitation, 8, 5.

    Article  Google Scholar 

  • Ho, N. S. K., Tong, K. Y., Hu, X. L., Fung, K. L., Wei, X. J., Rong, W., & Susanto, E. A. (2011). An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation. IEEE International Conference on Rehabilitation Robot Boston, MA (p. 5975340)

    Google Scholar 

  • Ibanez, R., Soria, L., Teyseyre, A., & Campo, M. (2014). Easy gesture recognition for Kinect. Advances in Engineering Software, 76, 171–180.

    Article  Google Scholar 

  • Klein, J., Spencer, S., Allington, J., Bobrow, J. E., & Reinkensmeyer, D. J. (2010). Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton. IEEE Transactions on Robotics, 26(4), 710–715.

    Article  Google Scholar 

  • Mali, U., & Munih, M. (2006). HIFE-haptic interface for finger exercise. IEEE/ASME Transactions on Mechatronics, 11, 93–102.

    Article  Google Scholar 

  • Masiero, S., Armani, M., & Rosati, G. (2011). Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: Focused review and results of new randomized controlled trial. Journal of Rehabilitation Research and Development, 48(4), 355–366.

    Article  Google Scholar 

  • Mavroidis, C., Nikitczuk, J., Weinberg, B., Danaher, G., Jensen, K., Pelletier, P., et al. (2005). Smart portable rehabilitation devices. Journal of NeuroEngineering and Rehabilitation, 2, 18.

    Article  Google Scholar 

  • Morales, R., Badesa, F. J., Garca-Aracil, N., & Sabater, J. M. (2011). Pneumatic robotic systems for upper limb rehabilitation. Medical and Biological Engineering and Computing, 49(10), 1145–1156.

    Article  Google Scholar 

  • Oda, K., Isozumi, S., Ohyama, Y., Tamida, K., Kikuchi, T., & Furusho, J. (2009). Development of isokinetic and iso-contractile exercise machine MEM-MRB using MR brake. IEEE International Conference on Rehabilitation Robotics (ICORR), Kyoto, Japan (pp. 6–11).

    Google Scholar 

  • Palsbo, S. E., & Hood-Szivek, P. (2012). Effect of robotic-assisted three-dimensional repetitive motion to improve hand motor function and control in children with handwriting deficits: A nonrandomized phase 2 device trial. American Journal of Occupational Therapy, 66(6), 682–690.

    Article  Google Scholar 

  • Parrinello, I., Faletti, S., & Santus, G. (2013). Use of a continuous passive motion device for hand rehabilitation: clinical trial on neurological patients. 41 National Congress of Italian Society of Medicine and Physical Rehabilitation, Rome-Italy.

    Google Scholar 

  • Patton, J., Small, S. L., & Rymer, W. Z. (2008). Functional restoration for the stroke survivor: Informing the efforts of engineers. Topics in Stroke Rehabilitation, 15(6), 521–541.

    Article  Google Scholar 

  • Pignolo, L., Dolce, G., Basta, G., Lucca, L. F., Serra, S., & Sannita, W. G. (2012). Upper limb rehabilitation after stroke, ARAMIS a robot-mechatronic innovative approach and prototype. 4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome-Italy (pp. 1410–1414).

    Google Scholar 

  • Platz, T. (2003). Evidence-based arm rehabilitation: A systematic review of the literature. Nervenarzt, 74(10), 841–849.

    Article  Google Scholar 

  • Pylatiuk, C., Kargov, A., Gaiser, I., Werner, T., Schulz, S., & Bretthauer, G. (2009). Design of a flexible fluidic actuation system for a hybrid elbow orthosis. IEEE International Conference on Rehabilitation Robotics (ICORR), Kyoto, Japan (pp. 167–171).

    Google Scholar 

  • Rahman, M. H., Saad, M., Kenn, J. P., & Archambault P. S. (2010). Exoskeleton robot for rehabilitation of elbow and forearm movements. 18th Mediterranean Conference on Control and Automation, Congress Palace Hotel, Marrakech, Morocco, June 23–25, 2010.

    Google Scholar 

  • Rahman, M. H., Thierry Ouimet, K., Maarouf, S., Kenn, J. P., Philippe, S., & Archambault, M. A. (2011). Robot assisted rehabilitation for elbow and forearm movements. International Journal of Biomechatronics and Biomedical Robotics, 1(4).

    Google Scholar 

  • Rahman, M. H., Thierry Ouimet, K., Maarouf, S., Kenn, J. P., Philippe, S., & Archambault, M. A. (2012). Development of a 4DoFs exoskeleton robot for passive arm movement assistance, International Journal of Mechatronics and Automation, 2(1).

    Google Scholar 

  • Rosen, J., Brand, M., Fuchs, M. B., & Arcan, M. (2001). A myosignal-based powered exoskeleton system. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 31(3), 210–222.

    Google Scholar 

  • Sale, P., Lombardi, V., Franceschini, M. (2012). Hand robotics rehabilitation: Feasibility and preliminary results of a robotic treatment in patients with hemiparesis. Stroke Research and Treatment (p. 820931).

    Google Scholar 

  • Song, R., Yu Tong, K., & Hu, X. (2008). Assistive control system using continuous myoelectric signal in robot-aided arm training for patients after stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(4), 371–379.

    Article  Google Scholar 

  • Stein, J., Narendran, K., McBean, J., Krebs, K., & Hughes, R. (2007). Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke. American Journal of Physical Medicine and Rehabilitation, 86(4), 255–261.

    Article  Google Scholar 

  • Stein, J. (2009). e100 NeuroRobotic system. Expert Review of Medical Devices, 6, 15–19.

    Article  Google Scholar 

  • Sulzer, J. S., Peshkin, M. A., & Patton, J. L. (2007). Design of a mobile, inexpensive device for upper extremity rehabilitation at home. 10th IEEE International Conference on Rehabilitation Robotics (ICORR), Noordwijk, Netherlands (pp. 933–937).

    Google Scholar 

  • Turaga, P., Chellappa, R., Subrahmanian, V. S., & Udrea, O. (2008). Machine recognition of human activities: A survey. IEEE Transactions on Circuits and Systems for Video Technology, 18(11), 1473–1488.

    Article  Google Scholar 

  • Vanderniepen, I., Van Ham, R., Van Damme, M., Versluys, R., Lefeber, D. (2009). Orthopaedic rehabilitation: A powered elbow orthosis using compliant actuation. IEEE International Conference on Rehabilitation Robotics (ICORR), Kyoto, Japan (pp. 172–177).

    Google Scholar 

  • Vanoglio, F., Luisa, A., Garofali, F., & Mora, C. (2013). Evaluation of the effectiveness of Gloreha (Hand Rehabilitation Glove) on hemiplegic patients. Pilot study. XIII Congress of Italian Society of Neurorehabilitation, Bari-Italy.

    Google Scholar 

  • Varalta, V., Smania, N., Geroin, C., Fonte, C., Gandolfi, M., & Picelli, A., et al. (2013). Effects of passive rehabilitation of the upper limb with robotic device Gloreha on visual-spatial and attentive exploration capacities of patients with stroke issues. XIII Congress of Italian Society of Neurorehabilitation, Bari-Italy.

    Google Scholar 

  • Weinland, D., Ronfard, R., & Boyer, E. (2011). A survey of vision-based methods for action representation, segmentation and recognition. Computer Vision and Image Understanding, 115(2), 224–241.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Bouteraa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Bouteraa, Y., Ben Abdallah, I. (2017). Estimated Model-Based Sliding Mode Controller for an Active Exoskeleton Robot. In: Derbel, N., Ghommam, J., Zhu, Q. (eds) Applications of Sliding Mode Control. Studies in Systems, Decision and Control, vol 79. Springer, Singapore. https://doi.org/10.1007/978-981-10-2374-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2374-3_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2373-6

  • Online ISBN: 978-981-10-2374-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics