Skip to main content

A Visual Feedback Model-Free Design for Robust Tracking of Nonholonomic Mobile Robots

  • Conference paper
  • First Online:
Proceedings of 2016 Chinese Intelligent Systems Conference (CISC 2016)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 405))

Included in the following conference series:

  • 991 Accesses

Abstract

This paper considers the problem of designing a visual feedback control law for robust tracking of nonholonomic mobile robots. The control approach developed in this work with uncalibrated visual parameters, unknown control directions, and external disturbances. Using incomplete information of the moving objects to be tracked to propose a model-free, self-support control algorithm to ensure the tracking error can be driven into a prespecified neighborhood of zero. Global stability of the corresponding closed-loop system of tracking error is proved by the Lyapunov stability theory. Finally, the simulation results demonstrate the effectiveness of the proposed controller design method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brockett RW (1983) Asymptotic stability and feedback stabilization. In: Brockett RW, Millman RS, Sussmann HJ (eds) Differential geometric control theory. Birkhauser, Boston, pp 181–208

    Google Scholar 

  2. Tian YP, Li S (2002) Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control. Automatica 38(7):1139–1146

    Article  MathSciNet  MATH  Google Scholar 

  3. Hussein II, Bloch AM (2008) Optimal control of underactuated nonholonomic mechanical systems. IEEE Trans Automat Control 53(3):668–682

    Article  MathSciNet  Google Scholar 

  4. Ge SS, Wang Zhuping, Lee TH (2003) Adaptive stabilization of uncertain nonholonomic systems by state and output feedback. Automatica 39(8):1451–1460

    Article  MathSciNet  MATH  Google Scholar 

  5. Yuanyuan Wu, Yuqiang Wu (2010) Robust stabilization of delayed non-holonomic systems with strong nonlinear drifts. Nonlinear Anal Real World Appl 11(5):3620–3627

    Article  MathSciNet  MATH  Google Scholar 

  6. Murray RM, Sastry SS (1993) Nonholonomic motion planning: Steering using sinusoids. IEEE Trans Autom Control 38(5):700–716

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen H, Wang C, Yang L, Zhang D (2012) Semiglobal stabilization for nonholonomic mobile robots based on dynamic feedback with inputs saturation. J Dyn Syst Meas Control 134(4):041006.1–041006.8

    Google Scholar 

  8. Teel A, Murry R, Walsh G (1992) Nonholonomic control systems: from steering to stabilization with sinusoids. Proc IEEE Conf Decis Control 2:1603–1609

    Google Scholar 

  9. Astolfi A (1996) Discontinuous control of nonholonomic systems. Syst Control Lett 27:37–45

    Article  MathSciNet  MATH  Google Scholar 

  10. Bloch AM, Drakunov S (1994) Stabilization of a nonholonomic systems via sliding modes. Proc IEEE Conf Decis Control 3:2961–2963

    Google Scholar 

  11. de Wit CC, SZrdalen OJ (1992) Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Trans Autom Control 37(11):1791–1797

    Article  MathSciNet  MATH  Google Scholar 

  12. Sordalen OJ, Egeland O (1995) Exponential stabilization of nonholonomic chained systems. IEEE Trans Autom Control 40(1):35–49

    Article  MathSciNet  MATH  Google Scholar 

  13. Soueres P, Balluchi A, Bicchi A (2001) Optimal feedback control for line tracking with a bounded-curvature vehicle. Int J Control 74(10):1009–1019

    Article  MathSciNet  MATH  Google Scholar 

  14. Hussein II, Bloch AM (2008) Optimal control of underactuated nonholonomic mechanical systems. IEEE Trans Autom Control 53(3):668–682

    Article  MathSciNet  Google Scholar 

  15. Qu Z, Wang J, Plaisted CE, Hull RA (2006) Global-stabilizing near-optimal control design for nonholonomic chained systems. IEEE Trans Autom Control 51(9):1440–1456

    Article  MathSciNet  Google Scholar 

  16. Keighobadi J, Menhaj MB (2012) From nonlinear to fuzzy approaches in trajectory tracking control of wheeled mobile robots. Asian J. Control 14(4):960–973

    Article  MathSciNet  MATH  Google Scholar 

  17. Chang Y-C, Yen H-M, Wang P-T (2012) An intelligent robust tracking control for a class of electrically driven mobile robots. Asian J. Control 14(6):1567–1579

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang Z, Li S, Fei S (2009) Finite-time tracking control of a nonholonomic mobile robot. Asian J Control 11:344–357

    Article  MathSciNet  Google Scholar 

  19. Ou M, Du H, Li S (2012) Finite-time tracking control of multiple nonholonomic mobile robots. J Franklin Inst 349:2834–2860

    Article  MathSciNet  MATH  Google Scholar 

  20. Liang Z, Wang C (2011) Robust stabilization of nonholonomic chained form systems with uncertainties. Acta Automatica Sina 37(2):129–142

    MathSciNet  MATH  Google Scholar 

  21. Novakovic ZR (1992) The principle of self-support in control systems. Elsevier Science Ltd

    Google Scholar 

  22. Chen H, Chen YQ (2015) Fractional-order generalized principle of self-support (FOG PSS) in control systems design. arXiv:1509.06043

  23. Chen H, Zhang J, Chen B, Li B (2013) Global practical stabilization for nonholonomic mobile robots with uncalibrated visual parameters by using a switching controller. IMA J Math Control Inf. doi:10.1093/imamci/dns044

    MATH  Google Scholar 

  24. C H, Chen B, Li B, Zhang J (2013) Practical stabilization of uncertain nonholonomic mobile robots based on visual servoing model with uncalibrated camera parameters. Math Prob Eng. doi:10.1155/2013/395410

    MathSciNet  MATH  Google Scholar 

  25. Chen H, Wang C, Liang Z et al (2014) Robust practical stabilization of nonholonomic mobile robots based on visual servoing feedback with inputs saturation. Asian J Control 16(3):692–702

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen H, Ding S, Chen X et al (2014) Global finite-time stabilization for nonholonomic mobile robots based on visual servoing. Int J Adv Robot Syst 11:1–13

    Google Scholar 

  27. Chang Y-C, Yen H-M, Wang P-T (2012) An intelligent robust tracking control for a class of electrically driven mobile robots. Asian J Control 14(6):1567–1579

    Article  MathSciNet  MATH  Google Scholar 

  28. Liang Z, Wang C (2011) Robust stabilization of nonholonomic chained form systems with uncertainties. Acta Automatica Sina 37(2):129–142

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

This work was supported by the Natural Science Foundation of China (61304004, 61503205), the Foundation of China Scholarship Council (201406715056), the China Postdoctoral Science Foundation funded project (2013M531263), the Jiangsu Planned Projects for Postdoctoral Research Funds (1302140C), the Project Supported by the Foundation (No.CZSR2014005) of Changzhou Key Laboratory of Special Robot and Intelligent Technology, P.R. China, and the Changzhou Sci&Tech Program (CJ20160013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Chen, H., Chen, H., Wang, Y., Yang, F. (2016). A Visual Feedback Model-Free Design for Robust Tracking of Nonholonomic Mobile Robots. In: Jia, Y., Du, J., Zhang, W., Li, H. (eds) Proceedings of 2016 Chinese Intelligent Systems Conference. CISC 2016. Lecture Notes in Electrical Engineering, vol 405. Springer, Singapore. https://doi.org/10.1007/978-981-10-2335-4_56

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2335-4_56

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2334-7

  • Online ISBN: 978-981-10-2335-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics