Skip to main content

Decoupled Tracking Control for a Flexible Multi-body Satellite with Solar Panels and Manipulator

  • Conference paper
  • First Online:
Proceedings of 2016 Chinese Intelligent Systems Conference (CISC 2016)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 405))

Included in the following conference series:

  • 1036 Accesses

Abstract

This paper studies the tracking control of a robotic manipulator mounted on a rigid satellite with flexible solar panels. By designing a decoupled feedback controller, the manipulator can track planned paths in the presence of the disturbances from the flexural modes of the panels, and meanwhile, the attitude dynamics of the satellite are stabilized. Stability analysis is proposed based on the Floquet theory for periodic linear systems. Finally, numerical simulations are carried out to validate the controller for the nonlinear model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schiehlen W (2006) Computational dynamics: theory and application of multibody systems. Eur J Mech 25(4):566–594

    Article  MathSciNet  MATH  Google Scholar 

  2. Wasfy TM, Noor AK (2003) Computational strategies for flexible multibody systems. Appl Mech Rev 56(6):533–613

    Article  Google Scholar 

  3. Zhang F, Duan GR (2012) Integrated translational and rotational finite-time maneuver of a rigid spacecraft with actuator misalignment. IET Control Theory Appl 6(9):1192–1204

    Article  MathSciNet  Google Scholar 

  4. Xin M, Pan H (2010) Integrated nonlinear optimal control of spacecraft in proximity operations. Int J Control 83(2):347–363

    Article  MathSciNet  MATH  Google Scholar 

  5. Aghili F (2008) Optimal control for robotic capturing and passivation of a tumbling satellite with unknown dynamics. In: AIAA guidance, navigation and control conference and exhibit, pp 1–21

    Google Scholar 

  6. Moradi M (2013) Self-tuning PID controller to three-axis stabilization of a satellite with unknown parameters. Int J Non-Linear Mech 49:50–66

    Article  Google Scholar 

  7. Crassidis JL, Vadali SR, Markley FL (2000) Optimal variable-structure control tracking of spacecraft maneuvers. J Guidance Control Dyn 23(3):564–566

    Article  Google Scholar 

  8. Khalil HK (2000) Nonlinear systems, 3rd edn. Prentice Hall

    Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC (No. 61273111), National Basic Research Program of China (973 Program, No. 2012CB821200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang .

Editor information

Editors and Affiliations

Appendix

Appendix

Symbol

Item

Symbol

Item

\(\widetilde{m}_0\)

Mass of the main body

R

Radius of the main body

\(m_0\)

Mass of solar panel BE, DF

L

Length of BE, DF

\(m_1 \)

Mass of robotic arm AP

\(L_1\)

Length of robotic arm AP

\(m_2\)

Mass of robotic arm PQ

\(L_2\)

Length of robotic arm PQ

\(m_3\)

Mass of robotic arm QR

\(L_3\)

Length of robotic arm QR

\(\rho \)

Density of the solar panels

\(\varvec{\gamma }\)

\(\gamma _k=\int _0^L\rho \xi \Lambda _k(\xi ) d\xi \)

K

Stiffness matrix of BE, DF

\(\varvec{\beta }\)

\(\beta _k=\int _0^L\rho \Lambda _k(\xi ) d\xi \)

\(\varvec{\Lambda }\)

First n flexural modes of BE, DF

\(\varvec{\alpha }\)

\(\alpha _k=\int _0^L\rho \Lambda _k(\xi )^2 d\xi \)

$$\begin{aligned} M_0=\widetilde{m}&_0+2m_0~~~~~~~~~J_0=\frac{\widetilde{m}_0R^2}{2}+2m_0(R^2+RL+\frac{L^2}{3})~~~~~\kappa _1^2=\frac{1}{3}L_1^2\\ \kappa _2^2=\frac{1}{3}&L_2^2~~~~\kappa _3^2=L_3^2(\frac{1}{3}m_3 + m)/(m_3+m)~~~~~~~~~\widetilde{\theta }=\theta +\theta _1+\theta _2+\theta _3\\ M\left( 1,1\right)&= M_0 + m_1 + m_2 + m_3 + m~~~~~~~~~~~~M\left( 1,2\right) = 0 \\ M\left( 1,3\right)&= - \left( \frac{m_2}{2} + m_3 + m\right) L_2\cos \left( \theta +\theta _1+\theta _2\right) - \left( \frac{m_3}{2} + m\right) L_3 \cos \widetilde{\theta } \\ {}&\quad - \,\left( m_1 + m_2 + m_3 + m\right) R\cos \theta - \left( \frac{m_1}{2}+ m_2 + m_3 + m\right) L_1\cos \left( \theta +\theta _1\right) \\ M\left( 1,4\right)&= - \left( \frac{m_1}{2} + m_2 + m_3 + m\right) L_1 \cos \left( \theta +\theta _1\right) - \left( \frac{m_2}{2} + m_3 + m\right) \\ {}&~~~\Big [ L_2 \cos \left( \theta +\theta _1+\theta _2\right) \Big ] - \left( \frac{m_3}{2} + m\right) L_3 \cos \widetilde{\theta } \\ M\left( 1,5\right)&= - \left( \frac{m_2}{2} + m_3 + m\right) L_2 \cos \left( \theta +\theta _1+\theta _2\right) \\ {}&\quad -\, \left( \frac{m_3}{2} + m\right) L_3 \cos \widetilde{\theta }\\ M\left( 1,6\right)&= - \left( \frac{m_3}{2} + m\right) L_3 \cos \widetilde{\theta }\\ M\left( 2,2\right)&= M_0 + m_1 + m_2 + m_3 + m \\ \end{aligned}$$
$$\begin{aligned} M\left( 2,3\right)&= - \left( \frac{m_2}{2} + m_3 + m\right) L_2 \sin \left( \theta +\theta _1+\theta _2\right) - \left( \frac{m_3}{2} + m\right) L_3 \sin \widetilde{\theta } \\&\quad -\, \left( m_1 + m_2 + m_3 + m\right) R \sin \theta - \left( \frac{m_1}{2}+ m_2 + m_3 + m\right) L_1 \sin \left( \theta +\theta _1\right) \\ M\left( 2,4\right)&= - \left( \frac{m_1}{2}+ m_2 + m_3 + m\right) L_1 \sin \left( \theta +\theta _1\right) \\ {}&\quad -\, \left( \frac{m_2}{2} + m_3 + m\right) L_2 \sin \left( \theta +\theta _1+\theta _2\right) - \left( \frac{m_3}{2} + m\right) L_3 \sin \widetilde{\theta } \\ M\left( 2,5\right)&= - \left( \frac{m_2}{2} + m_3 + m\right) L_2 \sin \left( \theta +\theta _1+\theta _2\right) - \left( \frac{m_3}{2} + m\right) L_3 \sin \widetilde{\theta }\\ M\left( 2,6\right)&= - \left( \frac{m_3}{2} + m\right) L_3 \sin \widetilde{\theta } \\ M\left( 3,3\right)&= J_0 + m_1 \left( R^2+\kappa _1^2\right) + m_2 \left( R^2+L_1^2+\kappa _2^2\right) \\ {}&\quad +\, 2 \left( \frac{m_1}{2}+ m_2 + m_3 + m\right) R L_1 \cos \theta _1+ \left( m_3+m\right) \left( R^2+L_1^2+L_2^2+\kappa _3^2\right) \\ {}&\quad + 2 \left( \frac{m_2}{2} + m_3 + m\right) L_2 \left[ R \cos \left( \theta _1+\theta _2\right) +L_1 \cos \theta _2\right] \\ {}&\quad +\, 2 \left( \frac{m_3}{2} + m\right) L_3 \left[ R \cos \left( \theta _1+\theta _2+\theta _3\right) + L_1 \cos \left( \theta _2+\theta _3\right) +L_2 \cos \theta _3\right] \\ M\left( 3,4\right)&= m_1 \kappa _1^2 + \left( \frac{m_1}{2}+ m_2 + m_3 + m\right) R L_1 \cos \theta _1 + \left( m_3+m\right) \left( L_1^2+L_2^2+\kappa _3^2\right) \\ {}&\quad +\,m_2 \left( L_1^2+\kappa _2^2\right) + \left( \frac{m_2}{2} + m_3 + m\right) L_2 \left[ R \cos \left( \theta _1+\theta _2\right) +2 L_1 \cos \theta _2\right] \\ {}&\quad +\, \left( \frac{m_3}{2} + m\right) L_3 \left[ R \cos \left( \theta _1+\theta _2+\theta _3\right) + 2 L_1 \cos \left( \theta _2+\theta _3\right) +2 L_2 \cos \theta _3\right] \\ M\left( 3,5\right)&= m_2 \kappa _2^2 + \left( m_3+m\right) \left( L_2^2+\kappa _3^2\right) \\ {}&\quad +\, \left( \frac{m_2}{2} + m_3 + m\right) L_2 \left[ R \cos \left( \theta _1+\theta _2\right) +L_1 \cos \theta _2\right] \\ {}&\quad +\, \left( \frac{m_3}{2} + m\right) L_3 \left[ R \cos \left( \theta _1+\theta _2+\theta _3\right) + L_1 \cos \left( \theta _2+\theta _3\right) +2 L_2 \cos \theta _3\right] \\ M\left( 3,6\right)&= \left( m_3+m\right) \kappa _3^2 \\ {}&\quad +\, \left( \frac{m_3}{2} + m\right) L_3 \left[ R \cos \left( \theta _1+\theta _2+\theta _3\right) + L_1 \cos \left( \theta _2+\theta _3\right) +L_2 \cos \theta _3\right] \\ M\left( 4,4\right)&= m_2 \left( L_1^2+\kappa _2^2\right) + \left( m_3+m\right) \left( L_1^2+L_2^2+\kappa _3^2\right) + 2 \left( \frac{m_2}{2} + m_3 + m\right) \\ {}&~~~~L_1 L_2 \cos \theta _2 + 2 \left( \frac{m_3}{2} + m\right) L_3 \left[ L_1\cos \left( \theta _2+\theta _3\right) +L_2 \cos \theta _3\right] m_1 \kappa _1^2 \\ M\left( 4,5\right)&= m_2 \kappa _2^2 + \left( m_3+m\right) \left( L_2^2+\kappa _3^2\right) + \left( \frac{m_2}{2} + m_3 + m\right) L_1 L_2 \cos \theta _2 \\ {}&\quad +\, \left( \frac{m_3}{2} + m\right) L_3 \left[ L_1 \cos \left( \theta _2+\theta _3\right) +2 L_2 \cos \theta _3\right] \\ M\left( 4,6\right)&= \left( m_3+m\right) \kappa _3^2 + \left( \frac{m_3}{2} + m\right) L_3 \left[ L_1 \cos \left( \theta _2+\theta _3\right) +L_2 \cos \theta _3\right] \\ M\left( 5,5\right)&= m_2 \kappa _2^2 + \left( m_3+m\right) \left( L_2^2+\kappa _3^2\right) + 2 \left( \frac{m_3}{2} + m\right) L_2 L_3 \cos \theta _3 \\ M\left( 5,6\right)&= \left( m_3+m\right) \kappa _3^2 + \left( \frac{m_3}{2} + m\right) L_2 L_3 \cos \theta _3 \\ M\left( 6,6\right)&= \left( m_3+m\right) \kappa _3^2 ~~~~~~~~~~~~M(7:(6+n),(7+n):(6+2n))= \varvec{0}_{n\times n}\\ M(1,7:&(6+n)) = -\varvec{\beta }^T \sin \theta ~~~~~M(1,(7+n):(6+2n)) = \varvec{\beta }^T \sin \theta \\ M(2,7:&(6+n))= \varvec{\beta }^T \cos \theta ~~~~~~~M(2,(7+n):(6+2n))= -\varvec{\beta }^T\cos \theta \\ M(3,7:&(6+2n)) = \varvec{\sigma }^T~~~~~~~~~~~~M(4:6,7:(6+2n))= \varvec{0}_{3\times 2n}\\ M(7:(6&+n),7:(6+n))=M((7+n):(6+2n),(7+n):(6+2n)) =diag\{\varvec{\alpha }\} \\ \end{aligned}$$
$$\begin{aligned} f\left( 1\right)&= \left( m_1+m_2+m_3+m\right) R \dot{\theta }^2 \sin \theta +\varvec{\beta }^T(\dot{\varvec{b}}-\dot{\varvec{a}}) \dot{\theta } \cos \theta \\&\quad +\, \left( \frac{m_1}{2}+m_2+m_3+m\right) L_1 \left( \dot{\theta }+\dot{\theta }_1\right) ^2 \sin \left( \theta +\theta _1\right) \\&\quad +\, \left( \frac{m_2}{2}+m_3+m\right) L_2\left( \dot{\theta }+\dot{\theta }_1+\dot{\theta }_2\right) ^2 \sin \left( \theta +\theta _1+\theta _2\right) \\&\quad +\, \left( \frac{m_3}{2}+m\right) L_3 \left( \dot{\theta }+\dot{\theta }_1+\dot{\theta }_2+\dot{\theta }_3\right) ^2 \sin \widetilde{\theta }\\ f\left( 2\right)&= -\left( m_1+m_2+m_3+m\right) R \dot{\theta }^2 \cos \theta +\varvec{\beta }^T(\dot{\varvec{b}}-\dot{\varvec{a}}) \dot{\theta } \sin \theta \\&\quad -\, \left( \frac{m_1}{2}+m_2+m_3+m\right) L_1 \left( \dot{\theta }+\dot{\theta }_1\right) ^2 \cos \left( \theta +\theta _1\right) \\&\quad -\, \left( \frac{m_2}{2}+m_3+m\right) L_2\left( \dot{\theta }+\dot{\theta }_1+\dot{\theta }_2\right) ^2 \cos \left( \theta +\theta _1+\theta _2\right) \\&\quad -\, \left( \frac{m_3}{2}+m\right) L_3 \left( \dot{\theta }+\dot{\theta }_1+\dot{\theta }_2+\dot{\theta }_3\right) ^2 \cos \widetilde{\theta }\\ f\left( 3\right)&= -\left( \frac{m_1}{2}+m_2+m_3+m\right) R L_1 \dot{\theta }_1 \left( 2 \dot{\theta }+\dot{\theta }_1\right) \sin \theta _1\\&\quad -\, \left( \frac{m_2}{2}+m_3+m\right) R L_2\left( 2 \dot{\theta }+2 \dot{\theta }_1+\dot{\theta }_2\right) \left( \dot{\theta }_1+\dot{\theta }_2\right) \sin \left( \theta _1+\theta _2\right) \\&\quad -\, \left( \frac{m_2}{2}+m_3+m\right) L_1 L_2\left( 2 \dot{\theta }+2 \dot{\theta }_1+\dot{\theta }_2\right) \dot{\theta }_2 \sin \theta _2\\&\quad -\, \left( \frac{m_3}{2}+m\right) R L_3 \left( 2 \dot{\theta }+\dot{\theta }_1+\dot{\theta }_2+\dot{\theta }_3\right) \left( \dot{\theta }_1+\dot{\theta }_2+\dot{\theta }_3\right) \sin \left( \theta _1+\theta _2+\theta _3\right) \\&\quad -\, \left( \frac{m_3}{2}+m\right) L_1 L_3 \left( 2 \dot{\theta }+2 \dot{\theta }_1+\dot{\theta }_2+\dot{\theta }_3\right) \left( \dot{\theta }_2+\dot{\theta }_3\right) \sin \left( \theta _2+\theta _3\right) \\&\quad -\, \left( \frac{m_3}{2}+m\right) L_2L_3 \left( 2 \dot{\theta }+2 \dot{\theta }_1+2 \dot{\theta }_2+\dot{\theta }_3\right) \dot{\theta }_3 \sin \theta _3\\&\quad +\,\varvec{\beta }^T(\dot{\varvec{a}}-\dot{\varvec{b}})(\dot{x}\cos \theta +\dot{y}\sin \theta )\\ f\left( 4\right)&= \Big [\left( \frac{m_1}{2}+m_2+m_3+m\right) L_1 \sin \theta _1+ \left( \frac{m_2}{2}+m_3+m\right) L_2\sin \left( \theta _1+\theta _2\right) \\&\quad +\, \left( \frac{m_3}{2}+m\right) L_3 \sin \left( \theta _1+\theta _2+\theta _3\right) \Big ] R \dot{\theta }^2\\&\quad -\, \left( \frac{m_2}{2}+m_3+m\right) L_1 L_2 \left( \dot{\theta }+2 \dot{\theta }_1+\dot{\theta }_2\right) \dot{\theta }_2 \sin \theta _2\\&\quad -\, \left( \frac{m_3}{2}+m\right) L_2 L_3\left( 2 \dot{\theta }+2 \dot{\theta }_1+2 \dot{\theta }_2+\dot{\theta }_3\right) \dot{\theta }_3 \sin \theta _3\\&\quad -\, \left( \frac{m_3}{2}+m\right) L_1 L_3\left( 2 \dot{\theta }+2 \dot{\theta }_1+\dot{\theta }_2+\dot{\theta }_3\right) \left( \dot{\theta }_2+\dot{\theta }_3\right) \sin \left( \theta _2+\theta _3\right) \\ f\left( 5\right)&= \left[ \left( \frac{m_2}{2}+m_3+m\right) L_2 \sin \left( \theta _1+\theta _2\right) +\left( \frac{m_3}{2}+m\right) L_3\sin \left( \theta _1+\theta _2+\theta _3\right) \right] R \dot{\theta }^2\\&\quad +\, \left[ \left( \frac{m_2}{2}+m_3+m\right) L_2 \sin \theta _2+\left( \frac{m_3}{2}+m\right) L_3\sin \left( \theta _2+\theta _3\right) \right] L_1 \left( \dot{\theta }+\dot{\theta }_1\right) ^2\\&\quad -\, \left( \frac{m_3}{2}+m\right) L_2 L_3\left( 2 \dot{\theta }+2 \dot{\theta }_1+2 \dot{\theta }_2+\dot{\theta }_3\right) \dot{\theta }_3 \sin \theta _3\\ f\left( 6\right)&= \left( \frac{m_3}{2}+m\right) L_3\Big [R \dot{\theta }^2 \sin \left( \theta _1+\theta _2+\theta _3\right) +L_1 \left( 2 \dot{\theta }+\dot{\theta }_1\right) \dot{\theta }_1 \sin \left( \theta _2+\theta _3\right) \\&\quad +\, L_2 \left( \dot{\theta }+\dot{\theta }_1+\dot{\theta }_2\right) ^2 \sin \theta _3\Big ]\\ f(7:&(6+n)) = -\varvec{\beta }\left( \dot{x} \cos \theta +\dot{y} \sin \theta \right) \dot{\theta } + K\varvec{a}\\ f((7&+n):(6+2n)) = \varvec{\beta }\left( \dot{x} \cos \theta +\dot{y} \sin \theta \right) \dot{\theta } + K\varvec{b}\\ \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Shi, C., Wang, Y. (2016). Decoupled Tracking Control for a Flexible Multi-body Satellite with Solar Panels and Manipulator. In: Jia, Y., Du, J., Zhang, W., Li, H. (eds) Proceedings of 2016 Chinese Intelligent Systems Conference. CISC 2016. Lecture Notes in Electrical Engineering, vol 405. Springer, Singapore. https://doi.org/10.1007/978-981-10-2335-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2335-4_48

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2334-7

  • Online ISBN: 978-981-10-2335-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics