Skip to main content

Differential Expression of Long Noncoding RNA in the Rat Brain During Aging

  • Chapter
  • First Online:
Topics in Biomedical Gerontology
  • 654 Accesses

Abstract

The discovery of genome-wide transcription through high-throughput sequencing in the mammals has revealed that only ~2 % of the genome is expressed into protein-coding mRNAs and the rest ~98 % makes different types of intergenic, intronic and repeat sequence-rich, small and long regulatory noncoding RNAs with multitude of biological functions. The complexity of mammalian brain has been largely attributed to diverse region-specific transcriptomes, a major portion of which has been recently found to consist of innumerable forms of long (>200 nt.) noncoding RNAs (lncRNAs), implicated in various functions such as brain development, cell-lineage specification, learning and memory. However, their relative association with processes involved in aging and age-related disorders has not been sufficiently explored. Here, we have characterized a repeat sequence containing long intergenic noncoding RNA (lincRNA), LINC-RBE (rat brain expressed) from the rat genome, which is differentially expressed in the brain during maturation and aging. Through expression analysis, LINC-RBE was shown to express in specific cell types and neuroanatomical compartments, e.g., cortex, hippocampus and cerebellum of the rat brain in an age-dependent manner. Thus, our study showed the possible interrelationship between lincRNAs and various brain functions during aging, which may provide an alternative basis to study various age-related neurological diseases and disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmohsen K, Panda A, Kang MJ, Xu J, Selimyan R, Yoon JH, Martindale JL, De S, Wood WH 3rd, Becker KG et al (2013) Senescence-associated lncRNAs: senescence-associated long noncoding RNAs. Aging Cell 12:890–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adler AS, Sinha S, Kawahara TL, Zhang JY, Segal E, Chang HY (2007) Motif module map reveals enforcement of aging by continual NF-kappaB activity. Genes Dev 21:3244–3257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akula N, Barb J, Jiang X, Wendland JR, Choi KH, Sen SK, Hou L, Chen DT, Laje G, Johnson K et al (2014) RNA-sequencing of the brain transcriptome implicates dysregulation of neuroplasticity, circadian rhythms and GTPase binding in bipolar disorder. Mol. Psychiatry 19:1179–1185

    Article  CAS  PubMed  Google Scholar 

  • Amiel JL (1965) The Nobel prize for Medicine 1965 is awarded to professors Lwoff, Monod and Jacob. Rev Fr Etud Clin Biol 10:1015–1017

    CAS  PubMed  Google Scholar 

  • Ananda G, Takemon Y, Hinerfeld D, Korstanje R (2014). Whole-genome sequence of the C57L/J mouse inbred strain. G3 (Bethesda) 4:1689–1692

    Google Scholar 

  • Aprea J, Prenninger S, Dori M, Ghosh T, Monasor LS, Wessendorf E, Zocher S, Massalini S, Alexopoulou D, Lesche M et al (2013) Transcriptome sequencing during mouse brain development identifies long non-coding RNAs functionally involved in neurogenic commitment. EMBO J 32:3145–3160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arning L, Ocklenburg S, Schulz S, Ness V, Gerding WM, Hengstler JG, Falkenstein M, Epplen JT, Gunturkun O, Beste C (2015) Handedness and the X chromosome: the role of androgen receptor CAG-repeat length. Sci Rep 5:8325. doi:10.1038/srep08325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajaj G (2002) Molecular cloning and characterization of human cDNAs by a simple repeat DNA probe, identification of novel candidate genes, Ph.D thesis. Jawaharlal Nehru University, New Delhi

    Google Scholar 

  • Ballarino M, Cazzella V, D’Andrea D, Grassi L, Bisceglie L, Cipriano A, Santini T, Pinnaro C, Morlando M, Tramontano A et al (2015) Novel long noncoding RNAs (lncRNAs) in myogenesis: a miR-31 overlapping lncRNA transcript controls myoblast differentiation. Mol Cell Biol 35:728–736

    Article  PubMed  CAS  Google Scholar 

  • Bao X, Wu H, Zhu X, Guo X, Hutchins AP, Luo Z, Song H, Chen Y, Lai K, Yin M et al (2015) The p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promoters. Cell Res 25:80–92

    Article  CAS  PubMed  Google Scholar 

  • Bates DJ, Li N, Liang R, Sarojini H, An J, Masternak MM, Bartke A, Wang E (2010) MicroRNA regulation in Ames dwarf mouse liver may contribute to delayed aging. Aging Cell 9:1–18

    Google Scholar 

  • Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z, Zhang MQ, Sedel F, Jourdren L, Coulpier F et al (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 29:3082–3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816

    Article  CAS  PubMed  Google Scholar 

  • Boehm M, Slack F (2005) A developmental timing microRNA and its target regulate life span in C. elegans. Science 310:1954–1957

    Article  CAS  PubMed  Google Scholar 

  • Boon RA, Iekushi K, Lechner S, Seeger T, Fischer A, Heydt S, Kaluza D, Tréguer K, Carmona G, Bonauer A et al (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495:107–110

    Google Scholar 

  • Cajigas I, Leib DE, Cochrane J, Luo H, Swyter K, Chen S, Clark BS, Thompson J, Yates JR 3rd, Kingston RE et al (2015) Evf2 lncRNA/BRG1/DLX1 interactions reveal RNA-dependent chromatin remodeling inhibition. Development 142:2641–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capobianco E (2014) RNA-Seq data: a complexity journey. Comput Struct Biotechnol J 11:123–130

    Article  PubMed  PubMed Central  Google Scholar 

  • Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    Article  CAS  PubMed  Google Scholar 

  • Carrieri C, Forrest AR, Santoro C, Persichetti F, Carninci P, Zucchelli S, Gustincich S (2015) Expression analysis of the long non-coding RNA antisense to Uchl1 (AS Uchl1) during dopaminergic cells’ differentiation in vitro and in neurochemical models of Parkinson’s disease. Front Cell Neurosci 9:114. doi:10.3389/fncel.2015.00114

    Article  PubMed  PubMed Central  Google Scholar 

  • Chassin C, Hempel C, Stockinger S, Dupont A, Kübler JF, Wedemeyer J, Vandewalle A, Hornef MW (2012) MicroRNA-146a-mediated downregulation of IRAK1 protects mouse and human small intestine against ischemia/ reperfusion injury. EMBO Mol Med 4:1308–1319

    Google Scholar 

  • Chen D, Fu LY, Zhang Z, Li G, Zhang H, Jiang L, Harrison AP, Shanahan HP, Klukas C, Zhang HY et al (2014) Dissecting the chromatin interactome of microRNA genes. Nucleic Acids Res 42:3028–3043

    Article  CAS  PubMed  Google Scholar 

  • Chiyomaru T, Fukuhara S, Saini S, Majid S, Deng G, Shahryari V, Chang I, Tanaka Y, Enokida H, Nakagawa M et al (2014). Long non-coding RNA HOTAIR is targeted and regulated by miR-141 in human cancer cells. J Biol Chem 289:12550–12565

    Google Scholar 

  • Chodroff RA, Goodstadt L, Sirey TM, Oliver PL, Davies KE, Green ED, Molnar Z, Ponting CP (2010) Long noncoding RNA genes: conservation of sequence and brain expression among diverse amniotes. Genome Biol 11:R72. doi:10.1186/gb-2010-11-7-r72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chow JC, Ciaudo C, Fazzari MJ, Mise N, Servant N, Glass JL, Attreed M, Avner P, Wutz A, Barillot E et al (2010) LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141:956–969

    Article  CAS  PubMed  Google Scholar 

  • Clark BS, Blackshaw S (2014) Long non-coding RNA-dependent transcriptional regulation in neuronal development and disease. Front Genet 5:164. doi:10.3389/fgene.2014.00164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cox KH, DeLeon DV, Angerer LM, Angerer RC (1984) Detection of mrnas in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol 101:485–502

    Article  CAS  PubMed  Google Scholar 

  • Cushing L, Costinean S, Xu W, Jiang Z, Madden L, Kuang P, Huang J, Weisman A, Hata A, Croce CM (2015) Disruption of miR-29 Leads to Aberrant Differentiation of Smooth Muscle Cells Selectively Associated with Distal Lung Vasculature. PLoS Genet 11:e1005238

    Google Scholar 

  • de Lencastre A, Pincus Z, Zhou K, Kato M, Lee SS, Slack FJ (2010) MicroRNAs both promote and antagonize longevity in C. elegans. Curr Biol 20:2159–2168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dellago H, Preschitz-Kammerhofer B, Terlecki-Zaniewicz L, Schreiner C, Fortschegger K, Chang MW, Hackl M, Monteforte R, Kühnel H, Schosserer M et al (2013) High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan. Aging Cell 12:446–458

    Google Scholar 

  • Denas O, Sandstrom R, Cheng Y, Beal K, Herrero J, Hardison RC, Taylor J (2015) Genome-wide comparative analysis reveals human-mouse regulatory landscape and evolution. BMC Genom 16:87. doi:10.1186/s12864-015-1245-6

    Article  Google Scholar 

  • Deng S, Zhu S, Wang B, Li X, Liu Y, Qin Q, Gong Q, Niu Y, Xiang C, Chen J et al (2014) Chronic pancreatitis and pancreatic cancer demonstrate active epithelial-mesenchymal transition profile, regulated by miR-217-SIRT1 pathway. Cancer Lett 355:184–191

    Google Scholar 

  • Dey I (2000) A study of chromatin structure and transcription using LINE DNA and simple repeat DNA probes. PhD thesis. School of Life Sciences, Jawaharlal Nehru University, New Delhi

    Google Scholar 

  • Dey I, Rath PC (2005) A novel rat genomic simple repeat DNA with RNA-homology shows triplex (H-DNA)-like structure and tissue-specific RNA expression. Biochem Biophys Res Commun 327:276–286

    Article  CAS  PubMed  Google Scholar 

  • Diederichs S (2014) The four dimensions of noncoding RNA conservation. Trends Genet 30:121–123

    Article  CAS  PubMed  Google Scholar 

  • Dimmeler S, Nicotera P (2013) MicroRNAs in age-related diseases. EMBO Mol Med 5:180–190

    Google Scholar 

  • Drummond MJ, McCarthy JJ, Sinha M, Spratt HM, Volpi E, Esser KA, Rasmussen BB (2011) Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics 43:595–603

    Google Scholar 

  • Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C, Irvine KM, Schroder K, Cloonan N, Steptoe AL, Lassmann T et al (2009) The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41:563–571

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD (2006) The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20:1470–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flintoft L (2013) Non-coding RNA: structure and function for lncRNAs. Nat Rev Genet 14:598. doi:10.1038/nrg3561

    CAS  Google Scholar 

  • Flynn RA, Chang HY (2014) Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 14:752–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Wang X, Zhang X, Ha T, Ma H, Liu L, Kalbfleisch JH, Gao X, Kao RL, Williams DL (2015) Attenuation of Cardiac Dysfunction in Polymicrobial Sepsis by MicroRNA-146a Is Mediated via Targeting of IRAK1 and TRAF6 Expression. J Immunol 195:672–682

    Google Scholar 

  • Geiduschek EP, Haselkorn R (1969) Messenger RNA. Annu Rev Biochem 38:647–676

    Article  CAS  PubMed  Google Scholar 

  • Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521

    Article  CAS  PubMed  Google Scholar 

  • Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442:199–202

    PubMed  Google Scholar 

  • Goff LA, Groff AF, Sauvageau M, Trayes-Gibson Z, Sanchez-Gomez DB, Morse M, Martin RD, Elcavage LE, Liapis SC, Gonzalez-Celeiro M et al (2015) Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain. Proc. Natl. Acad. Sci. U. S. A. 112:6855–6862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong C, Li Z, Ramanujan K, Clay I, Zhang Y, Lemire-Brachat S, Glass DJ (2015) A long non-coding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation. Dev Cell 34:181–191

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Buendia E, Saldana-Meyer R, Meier K, Recillas-Targa F (2015) Transcriptome-wide identification of in vivo interactions between RNAs and RNA-binding proteins by RIP and PAR-CLIP assays. Methods Mol Biol 1288:413–428

    Article  CAS  PubMed  Google Scholar 

  • Graff J, Mansuy IM (2008) Epigenetic codes in cognition and behaviour. Behav Brain Res 192:70–87

    Article  CAS  PubMed  Google Scholar 

  • Grillari J, Hackl M, Grillari-Voglauer R (2010) miR-17-92 cluster: ups and downs in cancer and aging. Biogerontology 11:501–506

    Google Scholar 

  • Grote A, Hiller K, Scheer M, Munch R, Nortemann B, Hempel DC, Jahn D (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33:W526–W531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guennewig B, Cooper AA (2014) The central role of noncoding RNA in the brain. Int Rev Neurobiol 116:153–194

    Article  PubMed  Google Scholar 

  • Guo L, Zhao Y, Yang S, Zhang H, Wu Q, Chen F (2014) An integrated evolutionary analysis of miRNA-lncRNA in mammals. Mol Biol Rep 41:201–207

    Article  CAS  PubMed  Google Scholar 

  • Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackl M, Brunner S, Fortschegger K, Schreiner C, Micutkova L, Mück C, Laschober GT, Lepperdinger G, Sampson N, Berger P (2010) miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging. Aging Cell 9:291–296

    Google Scholar 

  • Hamrick MW, Herberg S, Arounleut P, He HZ, Shiver A, Qi RQ, Zhou L, Isales CM, Mi QS (2010) The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice. Biochem Biophys Res Commun 400:379–383

    Google Scholar 

  • Hoffman Y, Pilpel Y, Oren M (2014) microRNAs and Alu elements in the p53-Mdm2-Mdm4 regulatory network. J Mol Cell Biol 6:192–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu G, Lou Z, Gupta M (2014) The long non-coding RNA GAS5 cooperates with the eukaryotic translation initiation factor 4E to regulate c-Myc translation. PLoS ONE 9:e107016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu J, Chen Z, Xia D, Wu J, Xu H, Ye ZQ (2012) Promoter-associated small double-stranded RNA interacts with heterogeneous nuclear ribonucleoprotein A2/B1 to induce transcriptional activation. Biochem J 447:407–416

    Article  CAS  PubMed  Google Scholar 

  • Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47:199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jazbutyte V, Fiedler J, Kneitz S, Galuppo P, Just A, Holzmann A, Bauersachs J, Thum T (2013) MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age 35:747–762

    Google Scholar 

  • Jiang L, Wang C, Lei F, Zhang L, Zhang X, Liu A, Wu G, Zhu J, Song L (2015) miR-93 promotes cell proliferation in gliomas through activation of PI3K/Akt signalling pathway. Oncotarget 6:8286–8299

    Google Scholar 

  • Johnson R (2012) Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiol Dis 46:245–254

    Article  CAS  PubMed  Google Scholar 

  • Johnsson P, Lipovich L, Grander D, Morris KV (2014) Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta 1840:1063–1071

    Article  CAS  PubMed  Google Scholar 

  • Kadakkuzha BM, Liu XA, McCrate J, Shankar G, Rizzo V, Afinogenova A, Young B, Fallahi M, Carvalloza AC, Raveendra B et al (2015) Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations. Front Cell Neurosci 9:63. doi:10.3389/fncel.2015.00063

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapusta A, Kronenberg Z, Lynch VJ, Zhuo X, Ramsay L, Bourque G, Yandell M, Feschotte C (2013) Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet 9:e1003470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karp X, Hammell M, Ow MC, Ambros V (2011) Effect of life history on microRNAs expression during C. elegans development. RNA 17:639–651

    Google Scholar 

  • Kato M, Chen X, Inukai S, Zhao H, Slack FJ (2011) Age-associated changes in expression of small, noncoding RNAs, including microRNAs, in C. elegans. RNA 17:1804–1820

    Google Scholar 

  • Kawaji H, Lizio M, Itoh M, Kanamori-Katayama M, Kaiho A, Nishiyori-Sueki H, Shin JW, Kojima-Ishiyama M, Kawano M, Murata M et al (2014) Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing. Genome Res 24:708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 106:11667–11672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna A, Muthusamy S, Liang R, Sarojini H, Wang E (2011) Gain of survival signalling by down-regulation of three key miRNAs in brain of calorie-restricted mice. Aging 3:223–236

    Google Scholar 

  • Kim K, Vinayagam A, Perrimon N (2014) A rapid genome-wide microRNA screen identifies miR-14 as a modulator of Hedgehog signaling. Cell Rep 7:2066–2077

    Google Scholar 

  • Kim DH, Marinov GK, Pepke S, Singer ZS, He P, Williams B, Schroth GP, Elowitz MB, Wold BJ (2015) Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming. Cell Stem Cell 16:88–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kour S (2015) Functional characterization of the noncoding RNAs from the repetitive DNA of mammalian genome. Jawaharlal Nehru University, New Delhi, PhD

    Google Scholar 

  • Kour S, Rath PC (2015) Age-dependent differential expression profile of a novel intergenic long noncoding RNA in rat brain. Int J Dev Neurosci 47:286–297

    Article  CAS  PubMed  Google Scholar 

  • Kour S, Rath PC (2016a) Age-related expression of a repeat-rich intergenic long noncoding RNA in the rat brain. Mol Neurobiol [Epub ahead of print]

    Google Scholar 

  • Kour S, Rath PC (2016b) All-trans retinoic acid induces expression of a novel intergenic long noncoding RNA in adult rat primary hippocampal neurons. J Mol Neurosci 58:266–276

    Google Scholar 

  • Kour S, Rath PC (2016c) Long noncoding RNAs in aging and age-related diseases. Ageing Res Rev 26:1–21

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa R (2011) Promoter-associated long noncoding RNAs repress transcription through a RNA binding protein TLS. Adv Exp Med Biol 722:196–208

    Article  CAS  PubMed  Google Scholar 

  • Hyun S, Lee JH, Jin H, Nam J, Namkoong B, Lee G, Chung J, Kim VN (2009) Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell 139:1096–1108

    Google Scholar 

  • Lasalle JM, Powell WT, Yasui DH (2013) Epigenetic layers and players underlying neurodevelopment. Trends Neurosci 36:460–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, Kingston RE (2006) Characterization of the piRNA complex from rat testes. Science 313:363–367

    Article  CAS  PubMed  Google Scholar 

  • Lee JT (2011) Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nat Rev Mol Cell Biol 12:815–826

    Article  CAS  PubMed  Google Scholar 

  • Legnini I, Morlando M, Mangiavacchi A, Fatica A, Bozzoni I (2014) A feedforward regulatory loop between HuR and the long noncoding RNA linc-MD1 controls early phases of myogenesis. Mol Cell 53:506–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Muthusamy S, Liang R, Sarojini H, Wang E (2011a) Increased expression of miR-34a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1. Mech Ageing Dev 132:75–85

    Google Scholar 

  • Li X, Khanna A, Li N, Wang E (2011b) Circulatory miR34a as an RNA based, noninvasive biomarker for brain aging. Aging 3:985–1002

    Google Scholar 

  • Li N, Bates DJ, An J, Terry DA, Wang E (2011c) Up-regulation of key microRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain. Neurobiol Aging 32:944–955

    Google Scholar 

  • Liang R, Khanna A, Muthusamy S, Li N, Sarojini H, Kopchick JJ, Masternak MM, Bartke A, Wang E (2011) Post-transcriptional regulation of IGF1R by key microRNAs in long-lived mutant mice. Aging Cell 10:1080–1088

    Google Scholar 

  • Liang C, Forrest AR, Wagner GP (2015) The statistical geometry of transcriptome divergence in cell-type evolution and cancer. Nat Commun 6:6066. doi:10.1038/ncomms7066

    Article  CAS  PubMed  Google Scholar 

  • Lin N, Chang KY, Li Z, Gates K, Rana ZA, Dang J, Zhang D, Han T, Yang CS, Cunningham TJ et al (2014a) An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol Cell 53:1005–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin ST, Heng MY, Ptacek LJ, Fu YH (2014b) Regulation of Myelination in the Central Nervous System by Nuclear Lamin B1 and Non-coding RNAs. Transl Neurodegener 3:4. doi:10.1186/2047-9158-3-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu N, Landreh M, Cao K, Abe M, Hendriks GJ, Kennerdell JR, Zhu Y, Wang LS, Bonini NM (2012) The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature 482:519–523

    Google Scholar 

  • Lizio M, Harshbarger J, Shimoji H, Severin J, Kasukawa T, Sahin S, Abugessaisa I, Fukuda S, Hori F, Ishikawa-Kato S et al (2015) Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol 16:22. doi:10.1186/s13059-014-0560-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, Garber M, Curran M, Onder T, Agarwal S et al (2010) Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 42:1113–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucanic M, Graham J, Scott G, Bhaumik D, Benz CC, Hubbard A, Lithgow GJ, Melov S (2013) Age-related micro-RNA abundance in individual C. elegans. Aging 5:394–411

    Google Scholar 

  • Lv J, Liu H, Huang Z, Su J, He H, Xiu Y, Zhang Y, Wu Q (2013) Long non-coding RNA identification over mouse brain development by integrative modeling of chromatin and genomic features. Nucleic Acids Res 41:10044–10061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maes OC, An J, Sarojini H, Wang E (2008) Murine microRNAs implicated in liver functions and aging process. Mech Ageing Dev 129:534–541

    Google Scholar 

  • Marasa BS, Srikantan S, Masuda K, Abdelmohsen K, Kuwano Y, Yang X, Martindale JL, Rinker-Schaeffer CW, Gorospe M (2009). Increased MKK4 abundance with replicative senescence is linked to the joint reduction of multiple microRNAs. Sci Signal 2:ra69

    Google Scholar 

  • Marchese FP, Huarte M (2014) Long non-coding RNAs and chromatin modifiers: their place in the epigenetic code. Epigenetics 9:21–26

    Article  CAS  PubMed  Google Scholar 

  • Mariño G, Ugalde AP, Fernández AF, Osorio FG, Fueyo A, Freije JM, López-Otín C (2010) Insulin-like growth factor 1 treatment extends longevity in a mouse model of human premature aging by restoring somatotroph axis function. Proc Natl Acad Sci USA 107:16268–16273

    Google Scholar 

  • Martinez I, Cazalla D, Almstead LL, Steitz JA, DiMaio D (2011) miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proc Natl Acad Sci USA 108:522–527

    Google Scholar 

  • Marques AC, Ponting CP (2014) Intergenic lncRNAs and the evolution of gene expression. Curr Opin Genet Dev 27:48–53

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS, Rinn JL (2015) Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol 22:5–7

    Article  CAS  PubMed  Google Scholar 

  • McHugh CA, Chen CK, Chow A, Surka CF, Tran C, McDonel P, Pandya-Jones A, Blanco M, Burghard C, Moradian A et al (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature. doi:10.1038/nature14443

    Google Scholar 

  • Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, Vasa-Nicotera M, Ippoliti A, Novelli G, Melino G et al (2009) MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120:1524–1532

    Google Scholar 

  • Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA 105:716–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20:300–307

    Article  CAS  PubMed  Google Scholar 

  • Mercer TR, Qureshi IA, Gokhan S, Dinger ME, Li G, Mattick JS, Mehler MF (2010) Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci 11:14. doi:10.1186/1471-2202-11-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meza-Sosa KF, Pedraza-Alva G, Pérez-Martínez L (2014) MicroRNAs: key triggers of neuronal cell fate. Front Cell Neurosci 8:175

    Google Scholar 

  • Milligan MJ, Lipovich L (2014) Pseudogene-derived lncRNAs: emerging regulators of gene expression. Front Genet 5:476. doi:10.3389/fgene.2014.00476

    PubMed  Google Scholar 

  • Mishra RR (2009) Expression and functional characterization of candidate cDNAs isolated by a simple repeat DNA probe. Ph.D thesis. School of Life Sciences, Jawaharlal Nehru University, New Delhi

    Google Scholar 

  • Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 20:1603–1614

    Google Scholar 

  • Mortimer SA, Kidwell MA, Doudna JA (2014) Insights into RNA structure and function from genome-wide studies. Nat Rev Genet 15:469–479

    Article  CAS  PubMed  Google Scholar 

  • Nelson C, Ambros V, Baehrecke EH (2014) miR-14 regulates autophagy during developmental cell death by targeting ip3-kinase 2. Mol Cell 56:376–388

    Google Scholar 

  • Ng SY, Bogu GK, Soh BS, Stanton LW (2013) The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell 51:349–359

    Article  CAS  PubMed  Google Scholar 

  • Noren Hooten N, Abdelmohsen K, Gorospe M, Ejiogu N, Zonderman AB, Evans MK (2010) MicroRNA expression patterns reveal differential expression of target genes with age. PLoS One 5:e10724

    Google Scholar 

  • Olive V, Minella AC, He L (2015) Outside the coding genome, mammalian microRNAs confer structural and functional complexity. Sci Signal 8, re2. doi:10.1126/scisignal.2005813

  • Persengiev S, Kondova I, Otting N, Koeppen AH, Bontrop RE (2011) Genome-wide analysis of miRNA expression reveals a potential role for miR-144 in brain aging and spinocerebellar ataxia pathogenesis. Neurobiol Aging 32:2316.e17–27

    Google Scholar 

  • Philippe JV, Ayadi L, Branlant C, Behm-Ansmant I (2015) Probing small non-coding RNAs structures. Methods Mol Biol 1296:119–136

    Article  CAS  PubMed  Google Scholar 

  • Pincus Z, Smith-Vikos T, Slack FJ (2011) MicroRNA predictors of longevity in Caenorhabditis elegans. PLoS Genet 7(9):e1002306

    Google Scholar 

  • Pnueli L, Rudnizky S, Yosefzon Y, Melamed P (2015) RNA transcribed from a distal enhancer is required for activating the chromatin at the promoter of the gonadotropin alpha-subunit gene. Proc Natl Acad Sci USA 112:4369–4374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponjavic J, Ponting CP (2007) The long and the short of RNA maps. BioEssays 29:1077–1080

    Article  CAS  PubMed  Google Scholar 

  • Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

    Article  CAS  PubMed  Google Scholar 

  • Porro A, Feuerhahn S, Lingner J (2014) TERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeres. Cell Rep 6:765–776

    Article  CAS  PubMed  Google Scholar 

  • Quek XC, Thomson DW, Maag JL, Bartonicek N, Signal B, Clark MB, Gloss BS, Dinger ME (2015) lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res 43:D168–D173

    Article  PubMed  Google Scholar 

  • Ramos AD, Andersen RE, Liu SJ, Nowakowski TJ, Hong SJ, Gertz CC, Salinas RD, Zarabi H, Kriegstein AR, Lim DA (2015) The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell 16:439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapicavoli NA, Qu K, Zhang J, Mikhail M, Laberge RM, Chang HY (2013) A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. Elife 2:e00762

    Article  PubMed  PubMed Central  Google Scholar 

  • Redon S, Zemp I, Lingner J (2013) A three-state model for the regulation of telomerase by TERRA and hnRNPA1. Nucleic Acids Res 41:9117–9128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinn JL (2014) lncRNAs: linking RNA to chromatin. Cold Spring Harb Perspect Biol 6. doi:10.1101/cshperspect.a018614

  • Robert L, Labat-Robert J, Robert AM (2010) Genetic, epigenetic and posttranslational mechanisms of aging. Biogerontology 11:387–399

    Article  CAS  PubMed  Google Scholar 

  • Roberts TC, Morris KV, Weinberg MS (2014a) Perspectives on the mechanism of transcriptional regulation by long non-coding RNAs. Epigenetics 9:13–20

    Google Scholar 

  • Roberts TC, Morris KV, Wood MJ (2014b) The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease. Philos Trans R Soc Lond B Biol Sci 369. doi:10.1098/rstb.2013.0507

  • Rokavec M, Li H, Jiang L, Hermeking H (2014) The p53/miR-34 axis in development and disease. J Mol Cell Biol 6:214–230

    Google Scholar 

  • Rutledge CE, Lau HT, Mangan H, Hardy LL, Sunnotel O, Guo F, MacNicol AM, Walsh CP, Lees-Murdock DJ (2014) Efficient translation of Dnmt1 requires cytoplasmic polyadenylation and Musashi binding elements. PLoS ONE 9:e88385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saksouk N, Barth TK, Ziegler-Birling C, Olova N, Nowak A, Rey E, Mateos-Langerak J, Urbach S, Reik W, Torres-Padilla ME et al (2014) Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation. Mol Cell 56:580–594

    Article  CAS  PubMed  Google Scholar 

  • Sambrook JRD (2001) Molecular Cloning. Cold Spring Harbour Press, New York, A laboratory manual

    Google Scholar 

  • Serna E, Gambini J, Borras C, Abdelaziz KM, Belenguer A, Sanchis P, Avellana JA, Rodriguez-Manas L, Vina J (2012) Centenarians, but not octogenarians, up-regulate the expression of microRNAs. Sci Rep 2:961. doi:10.1038/srep00961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shahryari A, Jazi MS, Samaei NM, Mowla SJ (2015) Long non-coding RNA SOX2OT: expression signature, splicing patterns, and emerging roles in pluripotency and tumorigenesis. Front Genet 6:196. doi:10.3389/fgene.2015.00196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi Z, Hayes G, Ruvkun G (2013) Dual regulation of the lin-14 target mRNA by the lin-4 miRNA. PLoS One 8:e75475

    Google Scholar 

  • Sigdel KR, Cheng A, Wang Y, Duan L, Zhang Y (2015) The emerging functions of long noncoding RNA in immune cells: autoimmune diseases. J Immunol Res 2015:848790. doi:10.1155/2015/848790

    Article  PubMed  PubMed Central  Google Scholar 

  • Siggens L, Ekwall K (2014) Epigenetics, chromatin and genome organization: recent advances from the ENCODE project. J Intern Med 276:201–214

    Article  CAS  PubMed  Google Scholar 

  • Singh DK, Rath PC (2012) Long interspersed nuclear elements (LINEs) show tissue-specific, mosaic genome and methylation-unrestricted, widespread expression of noncoding RNAs in somatic tissues of the rat. RNA Biol 9:1380–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh M (2012) Dysregulated A to I RNA editing and non-coding RNAs in neurodegeneration. Front Genet 3:326. doi:10.3389/fgene.2012.00326

    Article  PubMed  CAS  Google Scholar 

  • Sinha JK, Ghosh S, Swain U, Giridharan NV, Raghunath M (2014) Increased macromolecular damage due to oxidative stress in the neocortex and hippocampus of WNIN/Ob, a novel rat model of premature aging. Neuroscience 269:256–264

    Article  CAS  PubMed  Google Scholar 

  • Smith-Vikos T, Slack FJ (2012) MicroRNAs and their roles in aging. J Cell Sci 125:7–17

    Google Scholar 

  • Somarowthu S, Legiewicz M, Chillon I, Marcia M, Liu F, Pyle AM (2015) HOTAIR forms an intricate and modular secondary structure. Mol Cell 58:353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song R, Ro S, Michaels JD, Park C, McCarrey JR, Yan W (2009) Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nat Genet 41:488–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soumillon M, Necsulea A, Weier M, Brawand D, Zhang X, Gu H, Barthes P, Kokkinaki M, Nef S, Gnirke A et al (2013) Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep 3:2179–2190

    Article  CAS  PubMed  Google Scholar 

  • St Laurent G, Wahlestedt C, Kapranov P (2015) The Landscape of long noncoding RNA classification. Trends Genet 31:239–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland JM, McLaughlin EA, Hime GR, Siddall NA (2013) The Musashi family of RNA binding proteins: master regulators of multiple stem cell populations. Adv Exp Med Biol 786:233–245

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Eda A, Fukushima T, Hohjoh H (2012) Reduction of type IV collagen by upregulated miR-29 in normal elderly mouse and klotho-deficient, senescence-model mouse. PLoS One 711:e48974

    Google Scholar 

  • Trümbach D, Prakash N (2015) The conserved miR-8/miR-200 microRNA family and their role in invertebrate and vertebrate neurogenesis. Cell Tissue Res 359:161–177

    Google Scholar 

  • Toledano H, D'Alterio C, Czech B, Levine E, Jones DL (2012) The let-7-Imp axis regulates ageing of the Drosophila testis stem-cell niche. Nature 485:605–610

    Google Scholar 

  • Turner MJ, Jiao AL, Slack FJ (2014) Autoregulation of lin-4 microRNA transcription by RNA activation (RNAa) in C. elegans. Cell Cycle 13:772–781

    Google Scholar 

  • Ugalde AP, Ramsay AJ, de la Rosa J, Varela I, Mariño G, Cadiñanos J, Lu J, Freije JM, López-Otín C (2011) Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53. EMBO J 30:2219–2232

    Google Scholar 

  • van Almen GC, Verhesen W, van Leeuwen RE, van de Vrie M, Eurlings C, Schellings MW, Swinnen M, Cleutjens JP, van Zandvoort MA, Heymans S et al (2011) MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1 expression in age-related heart failure. Aging Cell 10:769–779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Balkom BW, de Jong OG, Smits M, Brummelman J, den Ouden K, de Bree PM, van Eijndhoven MA, Pegtel DM, Stoorvogel W, Wurdinger T, et al (2013) Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 121:3997–4006, S3991–3915

    Google Scholar 

  • Vasa-Nicotera M, Chen H, Tucci P, Yang AL, Saintigny G, Menghini R, Mahè C, Agostini M, Knight RA, Melino G et al (2011) miR-146a is modulated in human endothelial cell with aging. Atherosclerosis 217:326–330

    Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  • Vucicevic D, Corradin O, Ntini E, Scacheri PC, Orom UA (2015) Long ncRNA expression associates with tissue-specific enhancers. Cell Cycle 14:253–260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wahlestedt C (2013) Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat Rev Drug Discov 12:433–446

    Article  CAS  PubMed  Google Scholar 

  • Wan DY, Zhang Z, Yang HH (2015) Cardioprotective effect of miR-214 in myocardial ischemic postconditioning by down-regulation of hypoxia inducible factor 1, alpha subunit inhibitor. Cell Mol Biol 61:1–6

    Google Scholar 

  • Wang WX, Wilfred BR, Madathil SK, Tang G, Hu Y, Dimayuga J, Stromberg AJ, Huang Q, Saatman KE, Nelson PT (2010) miR-107 regulates granulin/progranulin with Implications for traumatic brain injury and neurodegenerative disease. Am J Pathol 177:334–345

    Google Scholar 

  • Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhao Y, Bao X, Zhu X, Kwok YK, Sun K, Chen X, Huang Y, Jauch R, Esteban MA et al (2015) LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Res 25:335–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  CAS  PubMed  Google Scholar 

  • Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  • Weichenhan D, Plass C (2013) The Evolving Epigenome. Hum Mol Genet 22:R1–R6

    Article  CAS  PubMed  Google Scholar 

  • Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, Hogenesch JB, Schultz PG (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309:1570–1573

    Article  CAS  PubMed  Google Scholar 

  • Wood EJ, Chin-Inmanu K, Jia H, Lipovich L (2013) Sense-antisense gene pairs: sequence, transcription, and structure are not conserved between human and mouse. Front Genet 4:183. doi:10.3389/fgene.2013.00183

    PubMed  PubMed Central  Google Scholar 

  • Xu D, Takeshita F, Hino Y, Fukunaga S, Kudo Y, Tamaki A, Matsunaga J, Takahashi RU, Takata T, Shimamoto A et al (2011) miR-22 represses cancer progression by inducing cellular senescence. J Cell Biol 193:409–424

    Google Scholar 

  • Xue Y, Gu D, Ma G, Zhu L, Hua Q, Chu H, Tong N, Chen J, Zhang Z, Wang M (2015) Genetic variants in lncRNA HOTAIR are associated with risk of colorectal cancer. Mutagenesis 30:303–310

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Lu X, Yuan L (2014) LncRNA: a link between RNA and cancer. Biochim Biophys Acta 1839:1097–1109

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Zhang L, Wen G, Zhao H, Luong LA, Chen Q, Huang Y, Zhu J, Ye S, Xu Q, Wang W, Xiao Q (2015) Upregulated sirtuin 1 by miRNA-34a is required for smooth muscle cell differentiation from pluripotent stem cells. Cell Death Differ 22:1170–1180

    Google Scholar 

  • Zaramela LS, Vencio RZ, ten-Caten F, Baliga NS, Koide T, 2014. Transcription start site associated RNAs (TSSaRNAs) are ubiquitous in all domains of life. PLoS One 9, e107680

    Google Scholar 

  • Zhang X, Zabinsky R, Teng Y, Cui M, Han M (2011) MicroRNAs play critical roles in the survival and recovery of Caenorhabditis elegans from starvation-induced L1 diapause. Proc Natl Acad Sci USA 108:17997–18002

    Google Scholar 

  • Zhao H, Wen G, Huang Y, Yu X, Chen Q, Afzal TA, Luong le A, Zhu J, Ye S, Zhang L et al (2015) MicroRNA-22 regulates smooth muscle cell differentiation from stem cells by targeting methyl CpG-binding protein 2. Arterioscler Thromb Vasc Biol 35:918–929

    Google Scholar 

  • Zheng Y, Xu Z (2014) MicroRNA-22 induces endothelial progenitor cell senescence by targeting AKT3. Cell Physiol Biochem 34:1547–1555

    Google Scholar 

  • Ziats MN, Rennert OM (2013) Aberrant expression of long noncoding RNAs in autistic brain. J Mol Neurosci 49:589–593

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank financial support from the University Grants Commission (UGC)-Research Networking Resource Centre, Department of Science and Technology (DST)-FIST & PURSE to the School of Life Sciences (SLS), Jawaharlal Nehru University (JNU) & PCR and the UGC-Junior & Senior Research Fellowship to SK for Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod C. Rath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kour, S., Rath, P.C. (2017). Differential Expression of Long Noncoding RNA in the Rat Brain During Aging. In: Rath, P., Sharma, R., Prasad, S. (eds) Topics in Biomedical Gerontology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2155-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2155-8_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2154-1

  • Online ISBN: 978-981-10-2155-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics