Skip to main content

Structural Alloy Testing: Part 1—Ambient Temperature Properties

  • Chapter
  • First Online:
Aerospace Materials and Material Technologies

Part of the book series: Indian Institute of Metals Series ((IIMS))

Abstract

Standard data on ambient temperature mechanical and environmental properties, including yield and tensile strengths, fatigue and fatigue crack growth, fracture toughness, corrosion and stress corrosion, are essential—indeed mandatory—for the qualification and certification of aerospace structural materials and the design of actual structures and components. This chapter discusses the determination of important ambient temperature mechanical and environmental properties of aerospace alloys at the basic level of specimen and coupon testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eswara Prasad N, Gokhale AA, Wanhill RJH (eds) (2014) Aluminum–lithium alloys: processing, properties and applications. Butterworth-Heinemann, Elsevier Inc, Oxford, UK

    Google Scholar 

  2. Wanhill RJH (2014) Aerospace applications of aluminum–lithium alloys. In: Eswara Prasad N, Gokhale AA, Wanhill RJH (eds) Aluminum–lithium alloys: processing, properties and applications. Butterworth-Heinemann, Elsevier, Inc., Oxford, UK, pp 503–535

    Google Scholar 

  3. Ball DL, Norwood DS, TerMaath SC (2006) Joint strike fighter airframe durability and damage tolerance certification. AIAA paper 2006-1867, 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1–4 May 2006, Newport, Rhode Island

    Google Scholar 

  4. Davis JR (ed) (2004) Tensile testing, 2nd edn. ASM International, Materials Park, OH 44073-0002, USA, pp 239–250

    Google Scholar 

  5. Chandler H (ed) (1999) Hardness testing, 2nd edn. ASM International, Materials Park, OH 44073-0002, USA

    Google Scholar 

  6. Herrmann K (ed) (2011) Hardness testing: principles and applications. ASM International, Materials Park, OH 44073-0002, USA

    Google Scholar 

  7. Barter SA, Molent L, Wanhill RJH (2012) Typical fatigue-initiating discontinuities in metallic aircraft structures. Int J Fatigue 41(1):11–22

    Article  Google Scholar 

  8. Barter SA, Molent L, Wanhill RJH (2010) Fatigue life assessment for high performance metallic airframe structures—an innovative practical approach. In: Ho S-Y (ed) Structural failure analysis and prediction methods for aerospace vehicles and structures. Bentham E-Books, Bentham Science Publishers, Sharjah, UAR, pp 1–17

    Google Scholar 

  9. Clark PN, Bellinger NC, Hoeppner DW (2015) Is the world ready for HOLSIP? In: Siljander A (ed) ICAF 2015 structural integrity: embracing the future—respecting the past; supporting aging fleets with new technologies. E-Book, VTT Technical Research Centre of Finland Ltd, Espoo, Finland, pp 34–46

    Google Scholar 

  10. Hu W, Tong YC, Walker KF, Mongru D, Amaratunga R, Jackson P (2006) A review and assessment of current lifing methodologies and tools in air vehicles division. DSTO Research Report DSTO-RR-0321, Defence Science and Technology Organisation, Melbourne, Australia

    Google Scholar 

  11. Ritchie RO, Suresh S (1983) Mechanics and physics of the growth of small cracks. In: Behaviour of short cracks in aircraft components, AGARD conference proceedings No. 328. Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, France, pp 1-1–1-14

    Google Scholar 

  12. McClung RC, Chan KS, Hudak SJ Jr, Davidson DL (1996) Behavior of small fatigue cracks. In: Lampman SR et al (eds) ASM handbook volume 19 fatigue and fracture. ASM International, Materials Park, OH 44073-0002, USA, pp 153–158

    Google Scholar 

  13. Wanhill RJH (1988) Low stress intensity fatigue crack growth in 2024-T3 and T351. Eng Fract Mech 30:223–260

    Article  Google Scholar 

  14. Venkateswara Rao KT, Ritchie RO (1989) Mechanical properties of Al–Li alloys: part 2. Fatigue crack propagation. Mater Sci Technol 5:896–907

    Article  Google Scholar 

  15. Suresh S, Ritchie RO (1984) Propagation of short fatigue cracks. Int Met Rev 29(6):445–476

    Google Scholar 

  16. Schütz W (1996) A history of fatigue. Eng Fract Mech 54(2):263–300

    Article  Google Scholar 

  17. De Jonge JB, Schütz D, Lowak H, Schijve J (1973) A standardized load sequence for flight simulation tests on transport aircraft wing structures. NLR Technical Report TR 73029U, National Aerospace Laboratory NLR, Amsterdam, The Netherlands

    Google Scholar 

  18. Lowak H, De Jonge JB, Franz J, Schütz D (1979) MINITWIST: a shortened version of TWIST. NLR Miscellaneous Publication MP 79018U, National Aerospace Laboratory NLR, Amsterdam, The Netherlands

    Google Scholar 

  19. Anon (1976) Description of a Fighter Aircraft Loading STAndard For Fatigue evaluation. Combined report of the F+W, LBF, NLR and IABG: available from the National Aerospace Laboratory NLR, Amsterdam, The Netherlands

    Google Scholar 

  20. Wanhill RJH (1994) Flight simulation fatigue crack growth testing of aluminium alloys: specific issues and guidelines. Int J Fatigue 16(2):99–110

    Article  Google Scholar 

  21. Wanhill RJH, Koolloos MFJ (2001) Fatigue and corrosion in aircraft pressure cabin lap splices. Int J Fatigue 23:S337–S347

    Article  Google Scholar 

  22. Molent L, Barter S, Wanhill R (2015) The decoupling of corrosion and fatigue for aircraft service life management. In: Siljander A (ed) ICAF 2015 structural integrity: embracing the future—respecting the past, supporting aging fleets with new technologies. E-Book, VTT Technical Research Centre of Finland Ltd, Espoo, Finland, pp 1062–1073

    Google Scholar 

  23. Wanhill RJH (1994) Damage tolerance engineering property evaluations of aerospace aluminium alloys. NLR Technical Publication TP 94177 U, National Aerospace Laboratory NLR, Amsterdam, The Netherlands

    Google Scholar 

  24. Wanhill RJH, Bray GH (2014) Fatigue crack growth behavior of aluminum–lithium alloys. In: Eswara Prasad N, Gokhale AA, Wanhill RJH (eds) Aluminum–lithium alloys: processing, properties and applications. Butterworth-Heinemann, Elsevier, Inc., Oxford, UK, pp 381–413

    Google Scholar 

  25. Edwards PR, Newman JC Jr (eds) (1990) Short-crack growth behaviour in various aircraft materials. AGARD Report No. 767, Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, France

    Google Scholar 

  26. Barter SA, Molent L, Wanhill RJH (2009) Marker loads for quantitative fractography of fatigue cracks in aerospace alloys. In: Bos MJ (ed) Bridging the gap between theory and operational practice. Springer Netherlands, Dordrecht, The Netherlands, pp 15–54

    Google Scholar 

  27. Huynh J, Molent L, Barter S (2008) Experimentally derived crack growth models for different stress concentration factors. Int J Fatigue 30:1766–1786

    Article  Google Scholar 

  28. Molent L (2014) A review of equivalent pre-crack sizes in aluminium alloy 7050-T7451. Fatigue Fract Eng Mater Struct 37:1055–1074

    Article  Google Scholar 

  29. Goldsmith NT (2000) Deep focus: a digital image processing technique to produce improved focal depth in light microscopy. Image Anal Stereol 19:163–167

    Article  Google Scholar 

  30. Molent L, Barter SA, Wanhill RJH (2011) The lead crack fatigue lifing framework. Int J Fatigue 33:323–331

    Article  Google Scholar 

  31. Janssen M, Zuidema J, Wanhill RJH (2002) Fracture mechanics, 2nd edn. Delft University Press, Delft, The Netherlands, pp 330–334

    Google Scholar 

  32. Brown KR (1984) The use of the chevron-notched short-bar specimen for plane-strain toughness determination in aluminum alloys. In: Underwood JH, Freiman SW, Baratta FI (eds) Chevron-notched specimens: testing and stress analysis, ASTM STP 855. ASTM International, West Conshohocken, PA 19428, USA, pp 237–254

    Google Scholar 

  33. Lynch SP, Wanhill RJH, Byrnes RT, Bray GH (2014) Fracture toughness and fracture modes of aerospace aluminum–lithium alloys. In: Eswara Prasad N, Gokhale AA, Wanhill RJH (eds) Aluminum–lithium alloys: processing, properties and applications. Butterworth-Heinemann, Elsevier, Inc., Oxford, UK, pp 415–455

    Google Scholar 

  34. De Vries TJ (2001) Residual strength. In: Vlot A, Gunnink JW (eds) Fibre metal laminates: an introduction. Kluwer Academic Publishers, Dordrecht, the Netherlands, pp 197–217

    Google Scholar 

  35. Holroyd NJH, Scamans GM, Newman RC, Vasudevan AK (2014) Corrosion and stress corrosion in aluminum–lithium alloys. In: Eswara Prasad N, Gokhale AA, Wanhill RJH (eds) Aluminum–lithium alloys: processing, properties and applications. Butterworth-Heinemann, Elsevier, Inc., Oxford, UK, pp 457–500

    Google Scholar 

  36. Iverson WP (1987) Microbial corrosion of metals. In: Laskin AL (ed) Advances in applied microbiology, vol 32. Academic Press Inc., Harcourt Brace Jovanovich, Orlando, FL 32887, USA, pp 1–36

    Google Scholar 

  37. Videla HA, Herrera LK (2005) Microbiologically influenced corrosion: looking to the future. Int Microbiol 8:169–180

    Google Scholar 

  38. Passman FJ (2013) Microbial contamination and its control in fuels and fuel systems since 1980—a review. Int Biodeterior Biodegradation 81:88–104

    Article  Google Scholar 

  39. Yang SS, Lin JY, Lin YT (1998) Microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system. J Microbiol Immunol Infect 31(3):151–164

    Google Scholar 

  40. Rajasekar A, Ting Y-P (2010) Microbial corrosion of Aluminum 2024 aeronautical alloy by hydrocarbon degrading bacteria Bacillus cereus ACE4 and Serratia marcescens ACE2. Ind Eng Chem Res 49(13):6054–6061

    Article  Google Scholar 

  41. Korb LJ (1987) Corrosion in the aerospace industry. In: Metals handbook ninth edition, vol 13 corrosion. ASM International, Metals Park, OH 44073-0002, USA, pp 1058–1100

    Google Scholar 

  42. European Cooperation for Space Standardization (2009) Determination of the susceptibility of metals to stress-corrosion cracking. European Space Agency ECSS-Q-ST-70-37C, ESA Requirements and Standards Division, Noordwijk, The Netherlands

    Google Scholar 

  43. National Aeronautics and Space Administration (2005) Guidelines for the selection of metallic materials for stress corrosion cracking resistance in sodium chloride environments. NASA EM30, MSFC-STD-3029, Revision A, George C. Marshall Space Flight Center, Huntsville, AL 35812, USA

    Google Scholar 

  44. European Cooperation for Space Standardization (2008) Material selection for controlling stress-corrosion cracking. European Space Agency ECSS-Q-ST-70-37C, ESA Requirements and Standards Division, Noordwijk, The Netherlands

    Google Scholar 

  45. Niedzinski M, Ebersolt D, Schulz P (2013) Review of airware alloys currently used for space launchers. In: Workshop: technical interchange meeting (TIM) on fracture control of spacecraft, launchers and their payloads and experiments, 20–21 March 2013, ESA/ESTEC, Noordwijk, The Netherlands

    Google Scholar 

  46. Tesch A (2013) Stress corrosion tests at ESA—recent highlights. In: Workshop: technical interchange meeting (TIM) on fracture control of spacecraft, launchers and their payloads and experiments, 20–21 March 2013, ESA/ESTEC, Noordwijk, The Netherlands

    Google Scholar 

  47. Warner-Locke J, Moran J, Hull B, Reilly L (2013) The effect of corrosion pit morphology on SCC and fatigue of 2x99 alloys compared to 7xxx Alloys. CORROSION 2013, NACE International, 17–21 March 2013, Orlando, FL 32819, USA

    Google Scholar 

  48. Brown BF (1966) A new stress-corrosion cracking test for high-strength alloys. Mater Res Stan 6(3):129–133

    Google Scholar 

  49. Defense Metals Information Center (1967) Accelerated crack propagation of titanium by methanol, halogenated hydrocarbons, and other solutions. DMIC Memorandum 228, Battelle Memorial Institute, Columbus, OH 43201, USA

    Google Scholar 

  50. Lisagor WB, Manning CR Jr, Bales TT (1968) Stress-corrosion cracking of Ti-6Al-4V titanium alloy in nitrogen tetroxide. NASA Technical Note NASA TN D-4289, National Aeronautics and Space Administration, Washington, DC, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R J H Wanhill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Wanhill, R.J.H. (2017). Structural Alloy Testing: Part 1—Ambient Temperature Properties. In: Prasad, N., Wanhill, R. (eds) Aerospace Materials and Material Technologies . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-2143-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2143-5_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2142-8

  • Online ISBN: 978-981-10-2143-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics