Skip to main content

Human Serum Albumin: A Multifunctional Protein

  • Chapter
  • First Online:
Albumin in Medicine

Abstract

Human serum albumin is synthesized in the liver and continuously secreted into the bloodstream. Several receptors are strongly involved in the following distribution and metabolism of the protein. The receptor-albumin interactions can be modified by specific mutations, a finding which could be of pharmaceutical and medical interest.

The largest pool of albumin is found in the extravascular spaces although at a lower concentration than in the bloodstream. The higher concentration in the circulation is the main contributor to plasma’s colloid osmotic pressure and to the Gibbs-Donnan effect in the capillaries.

Albumin seems to be the quantitatively most important circulating antioxidant, and it has enzymatic properties which are so pronounced that they most probably are of biological importance. The protein’s ability to bind ligands and thereby to serve as an important depot and transport protein for numerous endogenous and exogenous compounds is well studied. Recent work has given much new information about the location and structure of binding sites and about potential ligand interactions. Structural information is also useful when designing new drugs whether the aim is to avoid binding or to make use of the protein’s depot function. Nonbinding therapeutics can get improved stability and benefit from the long biological half-life of albumin by forming complexes with it. The complex formation can take place by enriching the therapeutic with an organic molecule which can bind reversibly or covalently to the protein. If the therapeutic is a polypeptide or protein, fusion proteins can be produced.

Albumin also shows promises for targeted drug delivery. This process can be passive and based on the enhanced permeability and retention effect. The effect can be increased by using dimers, polymers, or albumin-based nanoparticles. The targeting process can also be active and based on an interaction between albumin carrying a targeting ligand and cellular receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anraku M, Tsurusaki Y, Watanabe H, Maruyama T, Kragh-Hansen U, Otagiri M (2004) Stabilizing mechanisms in commercial albumin preparations: octanoate and N-acetyl-l-tryptophanate protect human serum albumin against heat and oxidative stress. Biochim Biophys Acta 1702:9–17

    Article  CAS  PubMed  Google Scholar 

  • Anraku M, Chuang VTG, Maruyama T, Otagiri M (2013) Redox properties of serum albumin. Biochim Biophys Acta 1830:5465–5472

    Article  CAS  PubMed  Google Scholar 

  • Anraku M, Shintomo R, Taguchi K, Kragh-Hansen U, Kai T, Maruyama T, Otagiri M (2015) Amino acids of importance for the antioxidant activity of human serum albumin as revealed by recombinant mutants and genetic variants. Life Sci 134:36–41

    Article  CAS  PubMed  Google Scholar 

  • Bal W, Sokolowska M, Kurowska E, Faller P (2013) Binding of transition metal ions to albumin: sites, affinities and rates. Biochim Biophys Acta 1830:5444–5455

    Article  CAS  PubMed  Google Scholar 

  • Bern M, Knudsen Sand KM, Nilsen J, Sandlie I, Andersen JT (2015) The role of albumin receptors in regulation of albumin homeostasis: implications for drug delivery. J Control Release 211:144–162

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya AA, Grüne T, Curry S (2000) Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J Mol Biol 303:721–732

    Article  CAS  PubMed  Google Scholar 

  • Bienk K, Dagnæs-Hansen F, Wengel J, Kragh-Hansen U, Howard KA (2015) Albumin-mediated protection, reduced immunogenicity and extended circulatory half-life of cholesterol modified small interfering RNA. Presented at the 2015 Annual Meeting of Controlled Release Society, Edinburgh, Scotland, July 26–29. Abstract 844

    Google Scholar 

  • Blindauer CA, Harvey I, Bunyan KE, Stewart AJ, Sleep D, Harrison DJ, Berezenko S, Sadler PJ (2009) Structure, properties and engineering of the major zinc binding site on human albumin. J Biol Chem 284:23116–23124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bujacz A (2012) Structures of bovine, equine and leporine serum albumin. Acta Cryst D68:1278–1289

    Google Scholar 

  • Cai C, Zhou K, Wu Y, Wu L (2006) Enhanced liver targeting of 5-fluorouracil using galactosylated human serum albumin as a carrier molecule. J Drug Target 14:55–61

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, He Y, Shi B, Yang D (2013) Human serum albumin from recombinant DNA technology: challenges and strategies. Biochim Biophys Acta 1830:5515–5525

    Article  CAS  PubMed  Google Scholar 

  • Chuang VTG, Kragh-Hansen U, Otagiri M (2002) Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm Res 19:569–577

    Article  PubMed  Google Scholar 

  • Cohen MP (2013) Clinical, pathophysiological and structure/function consequences of modification of albumin by Amadori-glucose adducts. Biochim Biophys Acta 1830:5480–5485

    Article  CAS  PubMed  Google Scholar 

  • Desai N, Trieu V, Damascelli B, Soon-Shiong P (2009) SPARC expression correlates with tumor response to albumin-bound Paclitaxel in head and neck cancer patients. Transl Oncol 2:59–64

    Article  PubMed  PubMed Central  Google Scholar 

  • Elsadek B, Kratz F (2012) Impact of albumin on drug delivery – new applications on the horizon. J Control Release 157:4–28

    Article  CAS  PubMed  Google Scholar 

  • Elzoghby AO, Samy WM, Elgindy NA (2012) Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 157:168–182

    Article  CAS  PubMed  Google Scholar 

  • Evans TW (2002) Review article: albumin as a drug – biological effects of albumin unrelated to oncotic pressure. Aliment Pharmacol Ther 16:6–11

    Article  CAS  PubMed  Google Scholar 

  • Fanali G, Trezza V, Marino M, Fasano M, Ascenzi P (2012) Human serum albumin: from bench to bedside. Mol Asp Med 33:209–290

    Article  CAS  Google Scholar 

  • Ferrer ML, Duchowicz R, Carrasco B, de la Torre JG, Acuna AU (2001) The conformation of serum albumin in solution: a combined phosphorescence depolarization-hydrodynamic modelling study. Biophys J 80:2422–2430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiume L, Di Stefano G (2010) Lactosaminated human albumin, a hepatotropic carrier of drugs. Eur J Pharm Sci 40:253–262

    Article  CAS  PubMed  Google Scholar 

  • Frahm GE, Smith DGS, Kane A, Lorbetskie B, Cyr TD, Girard M, Johnston MJW (2014) Determination of supplier-to-supplier and lot-to-lot variability in glycation of recombinant human serum albumin expressed in Oryza sativa. PLoS One 9:e109893

    Article  PubMed  PubMed Central  Google Scholar 

  • Furusyo N, Hayashi J (2013) Glycated albumin and diabetes mellitus. Biochim Biophys Acta 1830:5509–5514

    Article  CAS  PubMed  Google Scholar 

  • Galis Z, Ghitescu L, Simionescu M (1988) Fatty acids binding to albumin increases its uptake and transcytosis by the lung capillary endothelium. Eur J Cell Biol 47:358–365

    CAS  PubMed  Google Scholar 

  • Gaze DC (2009) Ischemia modified albumin: a novel biomarker for the detection of cardiac ischemia. Drug Metab Pharmacokinet 24:333–341

    Article  CAS  PubMed  Google Scholar 

  • Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S (2005) Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol 353:38–52

    Article  CAS  PubMed  Google Scholar 

  • He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  CAS  PubMed  Google Scholar 

  • Hein KL, Kragh-Hansen U, Morth JP, Jeppesen MD, Otzen D, Møller JV, Nissen P (2010) Crystallographic analysis reveals a unique lidocaine binding site on human serum albumin. J Struct Biol 171:353–360

    Article  CAS  PubMed  Google Scholar 

  • Ishima Y, Chen D, Fang J, Maeda H, Minomo A, Kragh-Hansen U, Kai T, Maruyama T, Otagiri M (2012a) S-Nitrosated human serum albumin dimer is not only a novel anti-tumor drug but also a potentiator for anti-tumor drugs with augmented EPR effects. Bioconjug Chem 23:264–271

    Article  CAS  PubMed  Google Scholar 

  • Ishima Y, Hoshino H, Shinagawa T, Watanabe K, Akaike T, Sawa T, Kragh-Hansen U, Kai T, Watanabe H, Maruyama T, Otagiri M (2012b) S-Guanylation of human serum albumin is a unique posttranslational modification and results in a novel class of antibacterial agents. J Pharm Sci 101:3222–3229

    Article  CAS  PubMed  Google Scholar 

  • Ishima Y, Fang J, Kragh-Hansen U, Yin H, Liao L, Katayama N, Watanabe H, Kai T, Suenaga A, Maeda H, Otagiri M, Maruyama T (2014) Tuning of poly-S-nitrosated human serum albumin as superior antitumor nanomedicine. J Pharm Sci 103:2184–2188

    Article  CAS  PubMed  Google Scholar 

  • Iwao Y, Anraku M, Yamasaki K, Kragh-Hansen U, Kawai K, Maruyama T, Otagiri M (2006) Oxidation of Arg-410 promotes the elimination of human serum albumin. Biochim Biophys Acta 1764:743–749

    Article  CAS  PubMed  Google Scholar 

  • Iwao Y, Hiraike M, Kragh-Hansen U, Mera K, Noguchi T, Anraku M, Kawai K, Maruyama T, Otagiri M (2007) Changes of net charge and α-helical content affect the pharmacokinetic properties of human serum albumin. Biochim Biophys Acta 1774:1582–1590

    Article  CAS  PubMed  Google Scholar 

  • Iwao Y, Hiraike M, Kragh-Hansen U, Kawai K, Suenaga A, Maruyama T, Otagiri M (2009) Altered chain-length and glycosylation modify the pharmacokinetics of human serum albumin. Biochim Biophys Acta 1794:634–641

    Article  CAS  PubMed  Google Scholar 

  • Iwao Y, Ishima Y, Yamada J, Noguchi T, Kragh-Hansen U, Mera K, Honda D, Suenaga A, Maruyama T, Otagiri M (2012) Quantitative evaluation of the role of cysteine and methionine residues in the antioxidant activity of human serum albumin using recombinant mutants. IUBMB Life 64:450–454

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita R, Ishima Y, Ikeda M, Kragh-Hansen U, Fang J, Nakamura H, Chuang VTG, Tanaka R, Hit M, Kodama A, Watanabe H, Hir M, Otagiri M, Maruyama (2015) S-Nitrosated human serum albumin dimer as novel nano-EPR enhancer applied to macromolecular anti-tumor drugs such as micelles and liposomes. J Control Release 217:1–9

    Article  CAS  PubMed  Google Scholar 

  • Kouno Y, Anraku M, Yamasaki K, Okayama Y, Iohara D, Ishima Y, Maruyama T, Kragh-Hansen U, Hirayama F, Otagiri M (2014) N-acetyl-l-methionine is a superior protectant of human serum albumin against photo-oxidation and reactive oxygen species compared to N-acetyl-l-tryptophan. Biochim Biophys Acta 1840:2806–2812

    Article  CAS  PubMed  Google Scholar 

  • Kragh-Hansen U (1981) Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 33:17–53

    CAS  PubMed  Google Scholar 

  • Kragh-Hansen U (2013) Molecular and practical aspects of the enzymatic properties of human serum albumin and of albumin-ligand complexes. Biochim Biophys Acta 1830:5535–5544

    Article  CAS  PubMed  Google Scholar 

  • Kragh-Hansen U, Chuang VTG, Otagiri M (2002) Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol Pharm Bull 25:695–704

    Article  CAS  PubMed  Google Scholar 

  • Kragh-Hansen U, Watanabe H, Nakajou K, Iwao Y, Otagiri M (2006) Chain length-dependent binding of fatty acid anions to human serum albumin studied by site-directed mutagenesis. J Mol Biol 363:702–712

    Article  CAS  PubMed  Google Scholar 

  • Kragh-Hansen U, Minchiotti L, Galliano M, Peters T Jr (2013) Human serum albumin isoforms: genetic and molecular aspects and functional consequences. Biochim Biophys Acta 1830:5405–5417

    Article  CAS  PubMed  Google Scholar 

  • Kragh-Hansen U, Minchiotti L, Coletta A, Bienk K, Galliano M, Schiøtt B, Iwao Y, Ishima Y, Otagiri M (2016) Mutants and molecular dockings reveal that the primary l-thyroxine binding site in human serum albumin is not the one which can cause familial dysalbuminemic hyperthyroxinemia. Biochim Biophys Acta 1860:648–660

    Article  CAS  PubMed  Google Scholar 

  • Majorek KA, Porebski PJ, Dayal A, Zimmerman MD, Jablonska K, Stewart AJ, Chruszcz M, Minor W (2012) Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol Immunol 52:174–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez CM, McClain CJ, Marsano LS (2005) Albumin therapy in clinical practice. Nutr Clin Pract 20:314–320

    Article  PubMed  Google Scholar 

  • Merlot AM, Kalinowski DS, Richardson DR (2014) Unraveling the mysteries of serum albumin –more than just a serum protein. Front Physiol 5:299, Article 299

    Article  PubMed  PubMed Central  Google Scholar 

  • Minchiotti L, Galliano M, Caridi G, Kragh-Hansen U, Peters T Jr (2013) Congenital analbuminaemia: molecular defects and biochemical and clinical aspects. Biochim Biophys Acta 1830:5494–5502

    Article  CAS  PubMed  Google Scholar 

  • Minomo A, Ishima Y, Chuang VTG, Suwa Y, Kragh-Hansen U, Narisoko T, Morioka H, Maruyama T, Otagiri M (2013) Albumin domain II mutant with high bilirubin binding affinity has a great potential as serum bilirubin excretion enhancer for hyperbilirubinemia treatment. Biochim Biophys Acta 1830:2917–2923

    Article  CAS  PubMed  Google Scholar 

  • Mitzner SR (2011) Extracorporeal liver support- albumin dialysis with the molecular adsorbent recirculating system (MARS). Ann Hepatol 10:S21–S28

    PubMed  Google Scholar 

  • Nakajou K, Watanabe H, Kragh-Hansen U, Maruyama T, Otagiri M (2003) The effect of glycation on the structure, function and biological fate of human serum albumin as revealed by recombinant mutants. Biochim Biophys Acta 1623:88–97

    Article  CAS  PubMed  Google Scholar 

  • Neumann E, Frei E, Funk D, Becker MD, Schrenk H-H, Müller-Ladner U, Fiehn C (2010) Native albumin for targeted drug delivery. Expert Opin Drug Deliv 7:915–925

    Article  CAS  PubMed  Google Scholar 

  • Oganesyan V, Damschroder MM, Cook KE, Li Q, Gao C, Wu H, Dall’Acqua WF (2014) Structural insights into neonatal Fc receptor-based recycling mechanisms. J Biol Chem 289:7812–7824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivieri JR, Craievich AF (1995) The subdomain structure of human serum albumin in solution under different pH conditions studied by small angle X-ray scattering. Eur Biophys J 24:77–84

    CAS  PubMed  Google Scholar 

  • Peters T Jr (1996) All about albumin: biochemistry, genetics and medical applications. Academic, San Diego

    Google Scholar 

  • Quinlan GJ, Martin GS, Evans TW (2005) Albumin: biochemical properties and therapeutic potential. Hepatology 41:1211–1219

    Article  CAS  PubMed  Google Scholar 

  • Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E (2008) The antioxidant properties of serum albumin. FEBS Lett 582:1783–1787

    Article  CAS  PubMed  Google Scholar 

  • Rollett A, Reiter T, Nogueira P, Cardinale M, Loureiro A, Gomes A, Cavaco-Paulo A, Moreira A, Carmo AM, Guebitz GM (2012) Folic acid-functionalized human serum albumin nanocapsules for targeted drug delivery to chronically activated macrophages. Int J Pharm 427:460–466

    Article  CAS  PubMed  Google Scholar 

  • Ryan AJ, Chung C-w, Curry S (2011a) Crystallographic analysis reveals the structural basis of the high-affinity binding of iophenoxic acid to human serum albumin. BMC Struct Biol 11:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan AJ, Ghuman J, Zunszain PA, Chung C-w, Curry S (2011b) Structural basis of binding of fluorescent, site-specific dansylated amino acids to human serum albumin. J Struct Biol 174:84–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sand KMK, Bern M, Nilsen J, Noordzij HT, Sandlie I, Andersen JT (2015) Unraveling the interaction between FcRn and albumin: opportunities for design of albumin-based therapeutics. Front Immunol 5:682, Article 682

    Article  PubMed  PubMed Central  Google Scholar 

  • Simard JR, Zunszain PA, Hamilton JA, Curry S (2006) Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis. J Mol Biol 361:336–351

    Article  CAS  PubMed  Google Scholar 

  • Sleep D (2014) Albumin and its application in drug delivery. Expert Opin Drug Deliv 12:793–812

    Article  PubMed  Google Scholar 

  • Spinella R, Sawhney R, Jalan R (2016) Albumin in chronic liver disease: structure, functions and therapeutic implications. Hepatol Int 10:124–132

    Article  PubMed  Google Scholar 

  • Sudlow G, Birkett DJ, Wade DN (1975) The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol 11:824–832

    CAS  PubMed  Google Scholar 

  • Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (1999) Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng 12:827–835

    Article  Google Scholar 

  • Taguchi K, Yamasaki K, Seo H, Otagiri M (2015) Potential use of biological proteins for liver failure therapy. Pharmaceutics 7:255–274

    Article  PubMed  PubMed Central  Google Scholar 

  • The Albumin Website: http://albumin.org. Accessed Sept 2015

  • Wang Z-m, Ho JX, Ruble JR, Rose J, Rüker F, Ellenburg M, Murphy R, Click J, Soistman E, Wilkerson L, Carter DC (2013) Structural studies of several clinically important oncology drugs in complex with human serum albumin. Biochim Biophys Acta 1830:5356–5374

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki K, Maruyama T, Kragh-Hansen U, Otagiri M (1996) Characterization of site I on human serum albumin: concept about the structure of a drug binding site. Biochim Biophys Acta 1295:147–157

    Article  PubMed  Google Scholar 

  • Yamasaki K, Chuang VTG, Maruyama T, Otagiri M (2013) Albumin-drug interaction and its clinical implication. Biochim Biophys Acta 1830:5435–5443

    Article  CAS  PubMed  Google Scholar 

  • Zunszain PA, Ghuman J, McDonagh AF, Curry S (2008) Crystallographic analysis of human serum albumin complexed with 4Z,15E-bilirubin-IXα. J Mol Biol 381:394–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I am indebted to Dr. Jan Terje Andersen, University of Oslo, Norway, for donating Fig. 1.2a and to Dr. Konrad Bienk, University of Aarhus, Denmark, for helping me in making the other figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Kragh-Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kragh-Hansen, U. (2016). Human Serum Albumin: A Multifunctional Protein. In: Otagiri, M., Chuang, V. (eds) Albumin in Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-10-2116-9_1

Download citation

Publish with us

Policies and ethics