Skip to main content

Integrated Lignin-Kraft Pulp Biorefinery for the Production of Lignin and Its Derivatives: Economic Assessment and LCA-Based Environmental Footprint

  • Chapter
  • First Online:
Production of Biofuels and Chemicals from Lignin

Part of the book series: Biofuels and Biorefineries ((BIOBIO))

Abstract

Recovery of lignin from Kraft black liquor is already at the commercial scale, and the conversion of lignin into high-value products is considered as one of the means for transforming pulp and paper mills into multiproduct biorefineries. However, this has not led to the widespread production of lignin derivatives because the actual techno-economic and environmental impacts of integrating new processes into existing mills are not well known, and have to be determined on a mill-by-mill basis. Furthermore, the technological readiness levels for some production pathways of lignin derivatives still range between 4 and 6, while they should range between 8 and 9, in practical environments. Therefore, to address such technical, economic, and environmental challenges, multi-criteria analysis is introduced in this chapter to provide the reader with a comprehensive assessment of integrated lignin-based biorefinery processes. The applicability of the approach is demonstrated by means of an industrial case study, involving a lignin recovery rate of up to 100 t/day from a softwood Kraft pulping mill that produces about 1000 air-dry-tonnes per day of bleached pulp. The subsequent conversion of recovered lignin into polyurethane foam and carbon fiber is analyzed, and the importance of the phased transformation of the Kraft pulp mill as well as the impact of subsidies on profitability are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All economic assessments are based on US dollars.

References

  1. Björk M, Rinne J, Nikunen K, Kotilainen A, Korhonen V, Wallmo H, Karlsson H. Successful start-up of lignin extraction at Stora Enso Sunila mill. In: VTT (ed) 6th Nordic wood biorefinery conference VTT, Helsinki, Finland; 2015. p. 185–92.

    Google Scholar 

  2. Benali M, Périn-Levasseur Z, Savulescu L, Kouisni L, Jemaa N, Kudra T, Paleologou M. Implementation of lignin-based biorefinery into a Canadian softwood kraft pulp mill: optimal resources integration and economic viability assessment. Biomass Bioenergy. 2014;67:473–82. doi:10.1016/j.biombioe.2013.08.022.

    Article  CAS  Google Scholar 

  3. Lora JH, Glasser WG. Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ. 2002;10:39–48. doi:10.1023/A:1021070006895.

    Google Scholar 

  4. Kadla J, Kubo S, Venditti R, Gilbert R, Compere A, Griffith W. Lignin-based carbon fibers for composite fiber applications. Carbon. 2002;40:2913–20. doi:10.1016/S0008-6223(02)00248-8.

    Article  CAS  Google Scholar 

  5. Lin SY. Commercial spent pulping liquors. In: Lin SY, Dence CW, editors. Methods in lignin chemistry. Berlin/Heidelberg: Springer; 1992. p. 75–80.

    Chapter  Google Scholar 

  6. Kannangara M, Marinova M, Fradette L, Paris J. Effect of mixing hydrodynamics on the particle and filtration properties of precipitated lignin. Chem Eng Res Des. 2016;105:94–106. doi:10.1016/j.cherd.2015.11.003.

    Article  CAS  Google Scholar 

  7. Pasquini D, Pimenta MTB, Ferreira LH, da Curvelo AAS. Extraction of lignin from sugar cane bagasse and Pinus taeda wood chips using ethanol–water mixtures and carbon dioxide at high pressures. J Supercrit Fluids. 2005;36:31–9.

    Article  CAS  Google Scholar 

  8. Domínguez de María P. Recent trends in (ligno)cellulose dissolution using neoteric solvents: switchable, distillable and bio-based ionic liquids. J Chem Technol Biotechnol. 2014;89:11–8.

    Article  Google Scholar 

  9. Arato C, Pye EK, Gjennestad G. The lignol approach to biorefining of woody biomass to produce ethanol and chemicals. Appl Biochem Biotechnol. 2005;123:0871–82.

    Article  Google Scholar 

  10. Leaf Resources. Leaf Resources announces cellulosic sugar patent application. Biomass Mag. 2015. http://biomassmagazine.com/articles/11809/leaf-resources-announces-cellulosic-sugar-patent-application. Accessed 8 Apr 2016.

  11. Leaf Resources. The business case for the Glycell TM process. Aust. Stock Exch. (ASX). 2015. http://www.asx.com.au/asxpdf/20150309/pdf/42x4ym52g7yf3m.pdf. Accessed 8 Apr 2016.

  12. Drewsen V. Ligno-tanning material and process of producing the same from waste sulfite liquor. US Patent 1,303,176 A. 1919.

    Google Scholar 

  13. Tomlinson Jr GH, Tomlinson GH. Method of treating lignocellulosic material. US Patent 2,406,867. 1946.

    Google Scholar 

  14. Pollak A, Drum LF, Keilen Jr JJ. Method of producing lignin from black liquor. US Patent 2,464,828 A. 1949.

    Google Scholar 

  15. Giesen J. Method of treating lignocellulosic material. US Patent 2,828,297 A. 1958.

    Google Scholar 

  16. Smolarski N. High-value opportunities for lignin: ready for liftoff. Paris: Frost & Sullivan; 2014.

    Google Scholar 

  17. Öhman F, Theliander H, Norgren M, Tomani P, Axegård P. Method for separating lignin from a lignin containing liquid/slurry. US Patent 8,815,052, B2. 2009.

    Google Scholar 

  18. Öhman F, Theliander H, Tomani P, Axegard P. Method for separating lignin from black liquor. US Patent 8,486,224 B2. 2013.

    Google Scholar 

  19. Kouisni L, Paleologou M. Method for separating lignin from black liquor. US Patent 9,091,023 B2. 2015.

    Google Scholar 

  20. Kouisni L, Maki K, Holt-Hindle P, Chan C, Paleologou M. Sulphur profile of the LignoForce System as compared to conventional lignin recovery processes. In: 6th Nordic wood biorefinery conference; 2015. p. 193–200.

    Google Scholar 

  21. Zhu JY, Chai X-S, Pan XJ, Luo Q, Li J. Quantification and reduction of organic sulfur compound formation in a commercial wood pulping process. Environ Sci Technol. 2002;36:2269–72.

    Article  CAS  PubMed  Google Scholar 

  22. Lake MA, Blackburn JC. Process for recovering lignin. US Patent 20110294991 A1. 2011.

    Google Scholar 

  23. Lake MA, Blackburn JC. SLRPTM – an innovative lignin-recovery technology. Cellul Chem Technol. 2014;48:799–804.

    CAS  Google Scholar 

  24. Bhattacharjee C, Sen D. Treatment of Kraft black liquor using membrane-based separation process. In: Membrane technologies and applications. Boca Raton: CRC Press; 2011. p. 107–19.

    Google Scholar 

  25. Jönsson A-S, Nordin A-K, Wallberg O. Concentration and purification of lignin in hardwood kraft pulping liquor by ultrafiltration and nanofiltration. Chem Eng Res Des. 2008;86:1271–80. doi:10.1016/j.cherd.2008.06.003.

    Article  Google Scholar 

  26. Arkell A, Olsson J, Wallberg O. Process performance in lignin separation from softwood black liquor by membrane filtration. Chem Eng Res Des. 2014;92:1792–800. doi:10.1016/j.cherd.2013.12.018.

    Article  CAS  Google Scholar 

  27. Toledano A, García A, Mondragon I, Labidi J. Lignin separation and fractionation by ultrafiltration. Sep Purif Technol. 2010;71:38–43. doi:10.1016/j.seppur.2009.10.024.

    Article  CAS  Google Scholar 

  28. Satyanarayana S, Bhattacharya P, De S. Flux decline during ultrafiltration of kraft black liquor using different flow modules: a comparative study. Sep Purif Technol. 2000;20:155–67. doi:10.1016/S1383-5866(00)00086-1.

    Article  CAS  Google Scholar 

  29. Ajao O, Rahni M, Marinova M, Chadjaa H, Savadogo O. Retention and flux characteristics of nanofiltration membranes during hemicellulose prehydrolysate concentration. Chem Eng J. 2015;260:605–15. doi:10.1016/j.cej.2014.09.007.

    Article  CAS  Google Scholar 

  30. Blanco MA, Negro C, Tijero J, De Jong ACMP, Schmal D. Electrochemical treatment of black liquor from straw pulping. Sep Sci Technol. 1996;31:2705–12.

    Article  CAS  Google Scholar 

  31. Ghatak HR, Kumar S, Kundu PP. Electrode processes in black liquor electrolysis and their significance for hydrogen production. Int J Hydrogen Energy. 2008;33:2904–11. doi:10.1016/j.ijhydene.2008.03.051.

    Article  CAS  Google Scholar 

  32. Lora J, Caro R, Cloutier J. Treatment of nonwood black liquors by electrolysis and lignin precipitation. In: TAPPI engineering. Pulping environmental conference. Atlanta: TAPPI Press; 2005. p. 267–71.

    Google Scholar 

  33. Rapp H-J, Pfromm PH. Electrodialysis field test for selective chloride removal from the chemical recovery cycle of a kraft pulp mill. Ind Eng Chem Res. 1998;37:4761–7. doi:10.1021/ie980376+.

    Article  CAS  Google Scholar 

  34. Haddad M, Cloutier J, Labrecque R, Savadogo O, Paris J. Effect of operating parameters on electrodialysis acidification of Kraft black liquor using bipolar membranes. In: International chemical recovery conference; 2014. p. 263–71.

    Google Scholar 

  35. Tolbert A, Akinosho H, Khunsupat R, Naskar AK, Ragauskas AJ. Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels Bioprod Biorefin. 2014;8:836–56.

    Article  CAS  Google Scholar 

  36. Boustead I. Polyurethane flexible foam. Brussels: Association of Plastics Manufacturers in Europe-PlasticsEurope; 2005.

    Google Scholar 

  37. Cateto CA, Barreiro MF, Rodrigues AE, Belgacem MN. Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams. Ind Eng Chem Res. 2009;48:2583–9. doi:10.1021/ie801251r.

    Article  CAS  Google Scholar 

  38. Li Y, Luo X, Hu S. Bio-based polyols and polyurethanes. Cham: Springer; 2015. doi:10.1007/978-3-319-21539-6.

    Google Scholar 

  39. Prisacariu C. Polyurethane elastomers. Vienna: Springer; 2011.

    Book  Google Scholar 

  40. Mills N. Polymer foams handbook. Burlington: Butterworth-Heinemann; 2007.

    Google Scholar 

  41. Cui C, Sadeghifar H, Sen S, Argyropoulos DS. Toward thermoplastic lignin polymers; Part II: thermal & polymer characteristics of kraft lignin & derivatives. BioResources. 2013;8:864–86. doi:10.15376/biores.8.1.864-886.

    Google Scholar 

  42. Borges da Silva EA, Zabkova M, Araújo JD, Cateto CA, Barreiro MF, Belgacem MN, Rodrigues AE. An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chem Eng Res Des. 2009;87:1276–92. doi:10.1016/j.cherd.2009.05.008.

    Article  CAS  Google Scholar 

  43. D’Souza J, George B, Camargo R, Yan N. Synthesis and characterization of bio-polyols through the oxypropylation of bark and alkaline extracts of bark. Ind Crops Prod. 2015;76:1–11. doi:10.1016/j.indcrop.2015.06.037.

    Article  Google Scholar 

  44. Hatakeyama H, Hatakeyama T. Lignin structure, properties, and applications. In: Abe A, Dusek K, Kobayashi S, editors. Biopolym. SE – 12. Berlin/Heidelberg: Springer; 2009. p. 1–63.

    Google Scholar 

  45. Jin Y, Ruan X, Cheng X, Lü Q. Liquefaction of lignin by polyethyleneglycol and glycerol. Bioresour Technol. 2011;102:3581–3. doi:10.1016/j.biortech.2010.10.050.

    Article  CAS  PubMed  Google Scholar 

  46. Li Y, Ragauskas AJ. Kraft lignin-based rigid polyurethane foam. J Wood Chem Technol. 2012;32:210–24. doi:10.1080/02773813.2011.652795.

    Article  Google Scholar 

  47. Bahl O, Shen Z, Lavin J, Ross R. Manufacture of carbon fibers. In: Carbon fibers. 3rd ed. New York: Marcel Dekker Inc.; 1998. p. 1–84.

    Google Scholar 

  48. Witten E, Kraus T, Kühnel M. Composites market report 2015. Germany: Federation of Reinforced Plastics; 2015.

    Google Scholar 

  49. Chatterjee S, Saito T. Lignin-derived advanced carbon materials. ChemSusChem. 2015;8:3941–58.

    Article  CAS  PubMed  Google Scholar 

  50. Maradur SP, Kim CH, Kim SY, Kim B-H, Kim WC, Yang KS. Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile. Synth Met. 2012;162:453–9.

    Article  CAS  Google Scholar 

  51. Wang S, Li Y, Xiang H, Zhou Z, Chang T, Zhu M. Low cost carbon fibers from bio-renewable Lignin/Poly(lactic acid) (PLA) blends. Compos Sci Technol. 2015;119:20–5. doi:10.1016/j.compscitech.2015.09.021.

    Article  CAS  Google Scholar 

  52. Garoff N. A novel concept for carbon fiber from renewable resources. 2015. In: 6th Nordic wood biorefinery conference. Helsinki, Finland. 2015. p. 235–8.

    Google Scholar 

  53. Lin J, Koda K, Kubo S, Yamada T, Enoki M, Uraki Y. Improvement of mechanical properties of softwood lignin-based carbon fibers. J Wood Chem Technol. 2013;34:111–21.

    Article  Google Scholar 

  54. Kubo S, Kadla J. Lignin-based carbon fibers: effect of synthetic polymer blending on fiber properties. J Polym Environ. 2005;13:97–105.

    Article  CAS  Google Scholar 

  55. Mainka H, Täger O, Körner E, Hilfert L, Busse S, Edelmann FT, Herrmann AS. Lignin – an alternative precursor for sustainable and cost-effective automotive carbon fiber. J Mater Res Technol. 2015;4:283–96. doi:10.1016/j.jmrt.2015.03.004.

    Article  CAS  Google Scholar 

  56. Mainka H, Hilfert L, Busse S, Edelmann F, Haak E, Herrmann AS. Characterization of the major reactions during conversion of lignin to carbon fiber. J Mater Res Technol. 2015;4:377–91.

    Article  CAS  Google Scholar 

  57. Norberg I. Carbon fibres from Kraft lignin. PhD thesis, KTH Royal Institute of Technology, Sweden; 2012.

    Google Scholar 

  58. Dallmeyer I, Lin L-T, Li Y, Ko FK, Kadla JF. Preparation and characterization of interconnected, Kraft lignin-based carbon fibrous materials by electrospinning. Macromol Mater Eng. 2014;299:540–51.

    Article  CAS  Google Scholar 

  59. Sprague JC, Whittaker JD. Economic analysis for engineers and managers: the Canadian context. Scarborough: Prentice-Hall Canada Inc.; 1986.

    Google Scholar 

  60. Dimian A. Integrated design and simulation of chemical processes. Amsterdam: Elsevier Science B.V; 2003.

    Google Scholar 

  61. Peters M, Timmerhaus K, West R. Plant design and economics for chemical engineers. 5th ed. New York: McGraw-Hill Education; 2003.

    Google Scholar 

  62. Sandin G, Røyne F, Berlin J, Peters GM, Svanström M. Allocation in LCAs of biorefinery products: implications for results and decision-making. J Clean Prod. 2015;93:213–21.

    Article  Google Scholar 

  63. Curran MA. Life cycle assessment: principles and practice. Cincinnati: National Risk Management Research Laboratory Office of Research and Development, U.S. Environmental Protection Agency; 2006.

    Google Scholar 

  64. International Organization for Standardization. ISO 14040: environmental management – life cycle assessment – principles and framework; 2006.

    Google Scholar 

  65. Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R. IMPACT 2002+: a new life cycle impact assessment methodology. Int J LCA. 2003;8:324–30.

    Article  Google Scholar 

  66. Warren C. Low cost carbon fiber overview, Presentation at 2010 DOE hydrogen program and vehicle technologies annual merit review and peer evaluation meeting.

    Google Scholar 

  67. Paulaskas F, Warren C, Eberle CC, Naskar AK, Ozcan S. Novel Precursor materials and approaches for producing lower cost carbon fiber for high volume industries. In: 17th international conference on composite materials; 2009.

    Google Scholar 

  68. Baker DA, Rials TG. Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci. 2013;130:713–28.

    Article  CAS  Google Scholar 

  69. Das S. Life cycle assessment of carbon fiber-reinforced polymer composites. Int J Life Cycle Assess. 2011;16:268–82.

    Article  CAS  Google Scholar 

  70. Chen M. Commercial viability analysis of lignin based carbon fibre. MBA thesis, Simon Fraser University, Canada; 2014.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support received from the Program on Energy Research and Development (PERD) and the Forest Innovation Program (FIP) of the Canadian Forest Service, at Natural Resources Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzouk Benali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Benali, M., Ajao, O., Jeaidi, J., Gilani, B., Mansoornejad, B. (2016). Integrated Lignin-Kraft Pulp Biorefinery for the Production of Lignin and Its Derivatives: Economic Assessment and LCA-Based Environmental Footprint. In: Fang, Z., Smith, Jr., R. (eds) Production of Biofuels and Chemicals from Lignin. Biofuels and Biorefineries. Springer, Singapore. https://doi.org/10.1007/978-981-10-1965-4_13

Download citation

Publish with us

Policies and ethics