Skip to main content

Depolymerization Mechanisms and Product Formation Rules for Understanding Lignin Pyrolysis

  • Chapter
  • First Online:
Production of Biofuels and Chemicals from Lignin

Part of the book series: Biofuels and Biorefineries ((BIOBIO))

  • 2548 Accesses

Abstract

Valorization of lignin to value-added products is crucial to support the economic feasibility and sustainability of biofuel production from renewable resources. Although pyrolysis of lignin has been studied for decades, detailed pyrolysis mechanisms are not well understood based on true lignins due to the complex structural heterogeneity of lignin. The objective of this chapter is to introduce major works investigating the depolymerization mechanisms of lignin and to provide pyrolysis product formation and distribution pathways through the combination of the experimental results and computational simulation. Theoretical calculation and comparison of the bond dissociation energies of the prevalent chemical linkages in two kinds of enzymatic/mild acidolysis lignins (EMAL) contribute greatly to a deeper understanding of the formation and distribution rules of pyrolytic products resulted from TG-FTIR and Py-GC/MS. The experimental and theoretical results in this chapter provide in-depth analysis of the product formation mechanisms during lignin pyrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. Lignin biosynthesis and structure. Plant Physiol. 2010;153(3):895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344(6185):709–19.

    Article  CAS  Google Scholar 

  3. Ma R, Xu Y, Zhang X. Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. ChemSusChem. 2015;8(1):24–51.

    Article  CAS  PubMed  Google Scholar 

  4. Venderbosch RH. A critical view on catalytic pyrolysis of biomass. ChemSusChem. 2015;8(8):1306–16.

    Article  CAS  PubMed  Google Scholar 

  5. Besse X, Schuurman Y, Guilhaume N. Hydrothermal conversion of lignin model compound eugenol. Catal Today. 2015;258:270–5.

    Article  CAS  Google Scholar 

  6. Wu A, Lauzon JM, Andriani I, James BR. Breakdown of lignins, lignin model compounds, and hydroxy-aromatics, to C1 and C2 chemicals via metal-free oxidation with peroxide or persulfate under mild conditions. RSC Adv. 2014;4(34):17931–4.

    Article  CAS  Google Scholar 

  7. De Wild PJ, Huijgen WJJ, Gosselink RJA. Lignin pyrolysis for profitable lignocellulosic biorefineries. Biofuels Bioprod Biorefin. 2014;8(5):645–57.

    Article  Google Scholar 

  8. Demirbas A. Biorefineries: current activities and future developments. Energy Convers Manag. 2009;50(11):2782–801.

    Article  CAS  Google Scholar 

  9. Jiang G, Nowakowski DJ, Bridgwater AV. A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta. 2010;498(1–2):61–6.

    Article  CAS  Google Scholar 

  10. Jankovic B. The comparative kinetic analysis of Acetocell and Lignoboost (R) lignin pyrolysis: The estimation of the distributed reactivity models. Bioresour Technol. 2011;102(20):9763–71.

    Article  CAS  PubMed  Google Scholar 

  11. Liu Q, Wang S, Zheng Y, Luo Z, Cen K. Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. J Anal Appl Pyrolysis. 2008;82(1):170–7.

    Article  CAS  Google Scholar 

  12. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–8.

    Article  CAS  Google Scholar 

  13. Bahrle C, Custodis V, Jeschke G, van Bokhoven JA, Vogel F. In situ observation of radicals and molecular products during lignin pyrolysis. ChemSusChem. 2014;7(7):2022–9.

    Article  PubMed  Google Scholar 

  14. Rajić N, Logar NZ, Rečnik A, El-Roz M, Thibault-Starzyk F, Sprenger P, Hannevold L, Andersen A, Stöcker M. Hardwood lignin pyrolysis in the presence of nano-oxide particles embedded onto natural clinoptilolite. Microporous Mesoporous Mater. 2013;176:162–7.

    Article  Google Scholar 

  15. Guo D, Wu S, Liu B, Yin X, Yang Q. Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification. Appl Energy. 2012;95:22–30.

    Article  CAS  Google Scholar 

  16. Faravelli T, Frassoldati A, Migliavacca G, Ranzi E. Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenergy. 2010;34(3):290–301.

    Article  CAS  Google Scholar 

  17. Wang S, Wang K, Liu Q, Gu Y, Luo Z, Cen K, Fransson T. Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol Adv. 2009;27(5):562–7.

    Article  CAS  PubMed  Google Scholar 

  18. Wang S, Lin H, Ru B, Sun W, Wang Y, Luo Z. Comparison of the pyrolysis behavior of pyrolytic lignin and milled wood lignin by using TG–FTIR analysis. J Anal Appl Pyrolysis. 2014;108:78–85.

    Article  CAS  Google Scholar 

  19. Wang S, Ru B, Lin H, Sun W, Luo Z. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood. Bioresour Technol. 2015;182(1):120–7.

    Article  CAS  PubMed  Google Scholar 

  20. Luo Z, Wang S, Guo X. Selective pyrolysis of organosolv lignin over zeolites with product analysis by TG-FTIR. J Anal Appl Pyrolysis. 2012;95:112–7.

    Article  CAS  Google Scholar 

  21. Elder T. A computational study of pyrolysis reactions of lignin model compounds. Holzforschung. 2010;64(4):435–40.

    Article  CAS  Google Scholar 

  22. Parthasarathi R, Romero RA, Redondo A, Gnanakaran S. Theoretical study of the remarkably diverse linkages in lignin. J Phys Chem Lett. 2011;2(20):2660–6.

    Article  CAS  Google Scholar 

  23. Kijima M, Hirukawa T, Hanawa F, Hata T. Thermal conversion of alkaline lignin and its structured derivatives to porous carbonized materials. Bioresour Technol. 2011;102(10):6279–85.

    Article  CAS  PubMed  Google Scholar 

  24. Huang X, Liu C, Huang J, Li H. Theory studies on pyrolysis mechanism of phenethyl phenyl ether. Comput Theor Chem. 2011;976(1–3):51–9.

    Article  CAS  Google Scholar 

  25. Klein MT, Virk PS. Modeling of lignin thermolysis. Energy Fuel. 2008;22(4):2175–82.

    Article  CAS  Google Scholar 

  26. Hou Z, Bennett CA, Klein MT, Virk PS. Approaches and software tools for modeling lignin pyrolysis. Energy Fuel. 2010;24(1):58–67.

    Article  CAS  Google Scholar 

  27. Zhang J, Jiang X, Ye X, Chen L, Lu Q, Wang X, Dong C. Pyrolysis mechanism of a β-O-4 type lignin dimer model compound. J Therm Anal Calorim. 2016;123:501–10.

    Article  CAS  Google Scholar 

  28. Younker JM, Beste A, Buchanan Iii AC. Computational study of bond dissociation enthalpies for lignin model compounds: β-5 Arylcoumaran. Chem Phys Lett. 2012;545:100–6.

    Article  CAS  Google Scholar 

  29. Yang Q, Wu S, Lou R, Lv G. Structural characterization of lignin from wheat straw. Wood Sci Technol. 2011;45(3):419–31.

    Article  CAS  Google Scholar 

  30. Lou R, Wu S. Products properties from fast pyrolysis of enzymatic/mild acidolysis lignin. Appl Energy. 2011;88(1):316–22.

    Article  CAS  Google Scholar 

  31. Lou R, Wu S, Lv G. Effect of conditions on fast pyrolysis of bamboo lignin. J Anal Appl Pyrolysis. 2010;89(2):191–6.

    Article  CAS  Google Scholar 

  32. Huang J, He C, Liu C, Tong H, Wu L, Wu S. A computational study on thermal decomposition mechanism of β-1 linkage lignin dimer. Comput Theor Chem. 2015;1054:80–7.

    Article  CAS  Google Scholar 

  33. Shi S, He F. Measurement and analysis of pulp and papermaking. Beijing: Light Industrial Press of China; 2003. p. 117–58.

    Google Scholar 

  34. Wu S, Argyropoulos DS. An improved method for isolating lignin in high yield and purity. J Pulp Pap Sci. 2003;29(7):235–40.

    CAS  Google Scholar 

  35. Lou R, Wu S. Pyrolysis characteristics of rice straw EMAL. Cellul Chem Technol. 2008;42(7–8):371–80.

    Google Scholar 

  36. Wu S, Lou R, Zhao Z. Study on the Characteristics of Crop Stalks EMAL Isolated. Pap Sci Technol. 2008;6(27):87–92.

    Google Scholar 

  37. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  38. Lv G, Wu S, Lou R, Yang Q. Analytical pyrolysis characteristics of enzymatic/mild acidolysis lignin from sugarcane bagasse. Cellul Chem Technol. 2010;44(9):335–42.

    CAS  Google Scholar 

  39. Lou R, Wu S, Lv G, Guo D. Pyrolytic products from rice straw and enzymatic/mild acidolysis lignin (EMAL). BioResources. 2010;5(4):2184–94.

    CAS  Google Scholar 

  40. Lou R, Wu S, Lv G. Fast pyrolysis of enzymatic mild acidolysis lignin from moso bamboo. BioResources. 2010;5(2):827–37.

    CAS  Google Scholar 

  41. Takashi H, Kawamoto H, Saka S. Role of methoxyl group in char formation from lignin-related compounds. J Anal Appl Pyrolysis. 2009;84(1):79–83.

    Article  Google Scholar 

  42. Huang J, Wu S, Cheng H, Ming L, Liang J, Hong T. Theoretical study of bond dissociation energies for lignin model compounds. J Fuel Chem Technol. 2015;43(4):429–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Basic Research Program of China (No. 2013CB228101), the National High Technology Research and Development Program of China (No. 2012AA101806), the National Science Foundation of China (No. 31400517), and the Open Foundation of SKLPPE (No. 201437).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubin Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Lyu, G., Wu, S., Lou, R. (2016). Depolymerization Mechanisms and Product Formation Rules for Understanding Lignin Pyrolysis. In: Fang, Z., Smith, Jr., R. (eds) Production of Biofuels and Chemicals from Lignin. Biofuels and Biorefineries. Springer, Singapore. https://doi.org/10.1007/978-981-10-1965-4_12

Download citation

Publish with us

Policies and ethics