Skip to main content

Studies of the Performance of Particle Dampers in Centrifugal Fields and the Influence of Recovery Coefficient on Vibration Suppression

  • Conference paper
  • First Online:
Proceedings of the 7th International Conference on Discrete Element Methods (DEM 2016)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 188))

Included in the following conference series:

  • 5473 Accesses

Abstract

This paper presents a dynamic model of particle dampers in gear transmission, investigates the performance of particle dampers in centrifugal fields under different rotational speeds and loads, analyzes the influence of recovery coefficient of the particle on the amount of energy the damper dissipates, and the optimum recovery coefficient is determined by the value of damping factor, which can also be expressed as the ratio of damped energy to the load power. The recovery coefficient changes with the thickness of the composite layer on the particle surface. Using the well-established discrete element method (DEM), we find the vibration produced by gear transmission can be effectively reduced by particle dampers and we discover the optimum recovery coefficient under different rotational speeds and loads. In the end, the simulated results are verified by experimental data and the DEM model has been validated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, J.: Vibration analysis on multi-mesh gear-trains under combined deterministic and random excitations. Mech. Mach. Theory 59, 20–33 (2013)

    Article  Google Scholar 

  2. Eritenel, T., Parker, R.G.: Three-dimensional nonlinear vibration of gear pairs. J. Sound Vib. 331, 3628–3648 (2012)

    Article  ADS  Google Scholar 

  3. Mohammed, O.D., Rantatalo, M., Aidanpää, J.-O.: Dynamic modeling of a one-stage spur gear system and vibration-based tooth crack detection analysis. Mech. Syst. Sig. Proces. 54–55, 293–305 (2015)

    Article  Google Scholar 

  4. Zhang, Y., Chen, X., Jiang, H., Tobler, W.: Dynamic modelling and simulation of a dual clutch automated lay shaft transmission. J. Mech. Des. 127, 302–307 (2005)

    Article  Google Scholar 

  5. Fredriksson, J., Weiefors, H., Egardt, B.: Powertrain control for active damping of driveline oscillations. Veh. Syst. Dyn. 37(5), 359–376 (2008)

    Article  Google Scholar 

  6. El-Sayed, A.T., Bauomy, H.: Passive and active controllers for suppressing the torsional vibration of multiple-degree-of-freedom system. J. Vib. Control 21, 2616–2622 (2015)

    Article  MathSciNet  Google Scholar 

  7. Liu, G., Parker, R.G.: Impact of tooth friction and its bending effect on gear dynamics. J. Sound Vib. 320, 1039–1063 (2009)

    Article  ADS  Google Scholar 

  8. Driss, Y., Hammami, A., Walha, L., Haddar, M.: Effects of gear mesh fluctuation and defaults on the dynamic behavior of two-stage straight bevel system. Mech. Mach. Theor. 82, 71–86 (2014)

    Article  Google Scholar 

  9. Liang, X., Zuo, M.J., Pandey, M.: Analytically evaluating the influence of crack on the mesh stiffness of a planetary gear set. Mech. Mach. Theor. 76, 20–38 (2014)

    Article  Google Scholar 

  10. Amarnath, M., Lee, S.-K.: Assessment of surface contact fatigue failure in a spur geared system based on the tribological and vibration parameter analysis. Measurement 76, 32–44 (2015)

    Article  Google Scholar 

  11. Zhong, Y.T., Wang, L.Q., Li, W.L.: Research on damping technology of gear transmission. J. Mech. Transm. 11, 17–20 (2011)

    Google Scholar 

  12. Yang, W.A¸ Xu, M.: Research on vibration and noise reduction of gear. J. Vib. Shock. 3, 49–52+56+85 (1995)

    Google Scholar 

  13. Siyu, C., Jinyuan, T., Lijuan, W.: Dynamics analysis of a crowned gear transmission system with impact damping: Based on experimental transmission error. Mech. Mach. Theor. 74, 354–369 (2014)

    Article  Google Scholar 

  14. Kurushin, M.I., Balyakina, V.B., Kurushin, S.A.: Methods of vibration control in elastic systems with gears. Dyn. Vibroacoustics Mach. 106, 192–201 (2015)

    Google Scholar 

  15. Richards, D., Pines, D.J.: Passive reduction of gear mesh vibration using a periodic drive shaft. J. Sound Vib. 264, 317–342 (2003)

    Article  ADS  Google Scholar 

  16. Friend, R.D., Kinra, V.K.: Particle impact damping. J. Sound Vib. 233(1), 93–118 (2000)

    Article  ADS  Google Scholar 

  17. Duan, Y., Chen, Q.: Experimental investigation of damping properties of the particle dampers with softlining. J. Vib. Eng. 24(2), 215–220 (2011)

    Google Scholar 

  18. Wensrich, C., Katterfeld, A.: Rolling friction as a technique for modeling particle shape in DEM. Powder Technol. 217, 409–417 (2012)

    Article  Google Scholar 

  19. Lu, Z., Lv, X.L., Yan, W.M.: Survey on the technology of particle damping. J. Vib. Shock 7, 1–7 (2013)

    Google Scholar 

  20. Panossian, H.V.: Structural damping enhancement via non-obstructive particle damping technique. J. Vib. Acoust. 114(1), 101–105 (1992)

    Article  Google Scholar 

  21. Kubur, M., Kahraman, A., Zini, D., Kienzle, K.: Dynamic analysis of a multi-shaft helical gear transmission by finite elements: model and experiment. J. Vib. Acoust. 126, 398–406 (2004)

    Article  Google Scholar 

  22. Masson, S., Martinez, J.: Micromechanical analysis of the shear behavior of a granular material. J. Eng. Mech. 127(10), 1007–1016 (2001)

    Article  Google Scholar 

  23. Yan, Y., Ji, S.: Discrete element modeling of direct shear tests for a granular material. Int. J. Numer. Anal. Methods Geomech. 34(9), 978–990 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Wan, Z., Cao, H., Zi, Y.: Mesh stiffness calculation using an accumulated integral potential energy method and dynamic analysis of helical gears. Mech. Mach. Theor. 92, 447–463 (2015)

    Article  Google Scholar 

  25. Dragomir, S.C., Sinnott, M., Semercigil, E.S., Turan, F.: Energy dissipation characteristics of the particle sloshing in a rotating cylinder. J. Sound Vib. 331(5), 963–973 (2012)

    Article  ADS  Google Scholar 

  26. Karsai, G.: Discrete kinematic systems: basic relations of combinatorial kinematics. Mech. Mach. Theor. 43, 1519–1529 (2008)

    Article  MATH  Google Scholar 

  27. Machado, C., Guessasma, M., Bellenger, E.: Electromechanical modeling by DEM for assessing internal ball bearing loading. Mech. Mach. Theory 92, 338–355 (2015)

    Article  Google Scholar 

  28. Wangqiang, X., Wei, L.: Experiment for vibration suppression based on particle damping for gear transmission. Adv. Mater. Res. 945–949, 703–706 (2014)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from National Natural Science Foundation of China (No. 51205382) and Science and technology plan project in Fujian (No. 2016H0032) and the Fundamental Research Funds for the Central Universities, Xiamen University (No. 20720150117) and Collaborative Innovation Center of High-End Equipment Manufacturing in FuJian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangqiang Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this paper

Cite this paper

Xiao, W., Luo, Y. (2017). Studies of the Performance of Particle Dampers in Centrifugal Fields and the Influence of Recovery Coefficient on Vibration Suppression. In: Li, X., Feng, Y., Mustoe, G. (eds) Proceedings of the 7th International Conference on Discrete Element Methods. DEM 2016. Springer Proceedings in Physics, vol 188. Springer, Singapore. https://doi.org/10.1007/978-981-10-1926-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1926-5_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1925-8

  • Online ISBN: 978-981-10-1926-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics