Skip to main content

Power Electronic Drives and Control Technology Status: Brief Review

  • Conference paper
  • First Online:
Proceedings of 2nd International Conference on Intelligent Computing and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 467))

Abstract

In the human race, 70 % of energy is devoured by electric motors. This rate may be expanded because of the growth of power electronic devices and the fast advancement of automation technology. Most assembling units overall depend on electric motors for their generation, therefore highlighting the requirement for a viable speed control motors to build creation. It is underlined power electronic devices innovation has encountered a dynamic improvement in the previous four decades. As of late, its applications are quick growing in modern, business, private, transportation, utility, aviation and military situations, principally because of the lessening of expense, size, and performance enhancement. Soft computing techniques, especially the neural systems are having as of late huge effect on electrical drives and power devices. Neural systems have created another new edge and development power devices, that is currently a fancy and multidisciplinary innovation that goes through the dynamic improvement as lately. In this article, the significance of power hardware, the late advances in power semiconductor devices, converters, AC motors with variable frequency, the dawn of microprocessors/microcontrollers/microcomputers permitted to actualize and these control methods will be discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.sparkmuseum.com/MOTORS.HTM

  2. Mecrow, B.C., Jack, A.G.: Efficiency trends in electric motors and drives. Energy Policy 36, 4336–4341 (2008)

    Article  Google Scholar 

  3. Rahman, M.A.: Modern electric motors in electronic world. 0-7803-0891-3/93, pp. 644–648 (1993)

    Google Scholar 

  4. Lorenz, R.D.: Advances in electric drive control. In: Proceedings of the International Conference on Electric Machines and Drives IEMD, pp. 9–16 (1999)

    Google Scholar 

  5. Finch, J.W., Giaouris, D.: Controlled AC electrical drives. IEEE Trans. Ind. Electron. 55(2), 481–491 (2008)

    Article  Google Scholar 

  6. Toliyat, H.A.: Recent advances and applications of power electronics and motor drives: electric motors and motor drives. In: Proceedings of the 34th IEEE Industrial Electronics Conference, IECON, Orlando, pp. 34–36 (2008)

    Google Scholar 

  7. Capilino, G.A.: Recent advances and applications of power electronics and motor drives: advanced and intelligent control techniques. In: Proceedings of the IEEE Industrial Electronics Conference, IECON, pp. 37–39 (2008)

    Google Scholar 

  8. Muller, S., Deicke, M., De Doncker, R.W.: Doubly-fed induction generator systems for wind turbines. IEEE IAS Mag. 8(3), 26–33 (2002)

    Google Scholar 

  9. Krishnan, R.: Electric Motor Drives: Modeling, Analysis, and Control. Prentice-Hall, Upper Saddle River (2001)

    Google Scholar 

  10. El-Sharkawi, A.: Fundamentals of Electric Drives. Brooks/Cole Publishing, PacificGrove (2000)

    Google Scholar 

  11. Mohan, N., Undeland, T.M., Robbins, W.P.: Power Electronics: Converters, Applications, and Design. Wiley, New York (2003)

    Google Scholar 

  12. Bose, B.K.: Modern Power Electronics and AC Drives. Prentice Hall PTR, Upper Saddle (2002)

    Google Scholar 

  13. Bose, B.K.: Advances in power electronics and drives: their impact on energy and environment. In: Proceedings of the International Conference on Power Electronic Drives Energy Systems for Industrial Growth, PEDES, vol. 1 (1998)

    Google Scholar 

  14. Skvarenina, T.L.: The Power Electronics Handbook. CRC Press, Boca Raton (2002)

    Google Scholar 

  15. Iwanski, G., Koczara, W.: DFIG-based power generation system with UPS function for variable-speed applications. IEEE Trans. Ind. Electron. 55(8), 3047–3054 (2008)

    Article  Google Scholar 

  16. Pena, R., Clare, J.C., Asher, G.M.: Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind energy generation. IEEE Proc. Electr. Power Appl. 143(3), 231–241 (1996)

    Article  Google Scholar 

  17. Forchetti, D., Garcia, G., Valla, M.I.: Vector control strategy for a doubly-fed stand-alone induction generator. In: Proceedings of the 28th IEEE International Conference, IECON, vol. 2, pp. 991–995 (2002)

    Google Scholar 

  18. Rich, N.: Xilinx puts ARM core into its FPGAs. EE Times. http://www.eetimes.com/electronicsproducts/processors/4115523/Xilinx-puts-ARM-core-into-its-FPGAs. Accessed 27 Apr 2010

  19. Leonhard, W.: Control of Electrical Drives, 2nd edn. Springer, New York (1996)

    Book  Google Scholar 

  20. Vas, P.: Artificial Intelligence Based Electric Machine and Drives: Application of Fuzzy, Neural, Fuzzy-Neural and Genetic Algorithm Based Techniques. Oxford University Press, Oxford (1999)

    Google Scholar 

  21. Daryabeigi, E., Markadeh, G.R.A., Lucas. C.: Emotional controller (BELBIC) for electric drives: a review. In: Proceedings of the IEEE IECON-2010, pp. 2901–2907 (2010)

    Google Scholar 

  22. Krzeminski, Z.: Non-linear control of induction motor. In: IFAC 10th World Congress Automotive Content, Munich, pp. 349–354 (1987)

    Google Scholar 

  23. Abu-Rub, H., Krzemisnki, Z., Guzinski, J.: Non-linear control of induction motor: idea and application. In: proceedings of the 9th International Conference on Power Electronics and Motion Control, EPE–PEMC, Kosice, vol. 6, pp. 213–218 (2000)

    Google Scholar 

  24. Levi, E.: Multiphase electric motors for variable-speed applications. IEEE Trans. Ind. Electron. 55(5), 1893–1909 (2008)

    Article  Google Scholar 

  25. Balkenius, C., Moren, J.: Emotional learning: a computational model of the amygdala. Cybern. Syst. 32(6), 611–636 (2000)

    Article  MATH  Google Scholar 

  26. Gopakumar, K.: Power Electronics and Electrical Drives, Video Lectures 1–25, vol. 55(3), pp. 157–164, Centre for Electronics and Technology, Indian Institute of Science, Bangalore (2000)

    Google Scholar 

  27. Bimbhra, P.S.: Power Electronics. Khanna Publishers, New Delhi (2006)

    Google Scholar 

  28. Dubey, G.K.: Fundamentals of Electrical Drives. Narosa Publishing House, New Delhi (2009)

    Google Scholar 

  29. Bose, B.K.: Power electronics, and motor drives recent technological advances. In: Proceedings of the IEEE International Symposium on Industrial Electronics, IEEE, pp. 22–25 (2002)

    Google Scholar 

  30. Kenjo, T., Nagamori, S.: Permanent Magnet DC Brushless Motors. Clarendon Press, Oxford (1985)

    Google Scholar 

  31. Bose, B.K.: Power Electronics and Variable Frequency Readers, Technology and Applications. IEEE Press, Piscataway (1997)

    Google Scholar 

  32. Puttaswamy, C.L.: Analysis, Design, and Control Permanent Magnet Brushless Motors. Ph.D. Thesis, IIT Delhi (1996)

    Google Scholar 

  33. Singh, B., Murthy, S.S., Reddy, A.H.N.: A micro speed controller for permanent magnet brushless DC motor. IETE Tech. Rev. 17(5), 299–310 (2000)

    Google Scholar 

  34. Singh, B., Reddy, A.H.N., Murthy, S.: Gain planning control brushless permanent magnet DC motor. IE (I) EL-J. 84, 52–62 (2003)

    Google Scholar 

  35. Kim, T., Lee, H.W., Parsa, L., Ehsani, M.: Optimal power and torque control of brushless DC(BLDC) motor drive/electric and hybrid electric generator vehicles. In: Proceedings of the IEEE Industry Applications Conference, Flight. 3, pp. 1276–1281 (2006)

    Google Scholar 

  36. Dwivedi, S.K.: Power quality improvements and sensor reductions permanent magnet synchronous drives. Ph.D. Thesis, IIT Delhi (2006)

    Google Scholar 

  37. Murphy, J.M.D., Turnbull, F.G.: Electronic Power Control of AC Motors. Pergamon Press, Oxford (1988)

    Google Scholar 

  38. Miller, T.J.E.: Brushless Permanent Magnet and Reluctance Motor Drive. Clarendon Press, Oxford (1989)

    Google Scholar 

  39. Singh, B., Singh, B.P., Dwivedi, S.K.: A state of the art of various permanent magnet brush configurations motors. IE (I) J.-EL, 78, 63–73 (2006)

    Google Scholar 

  40. Soares, F., Costa Branco, P.J.: Simulation of a switched 6/4 reluctance based on matlab/simulink environment. IEEE Trans. Aerosp. Electron. Syst. Flight 37(3), 989–1009 (2001)

    Article  Google Scholar 

  41. Comparison of design and FET Harris Miller: Performance parameters in induction motors and switched reluctance. In: IEE in 1989 Electrical Motors and Drives Conference, London (1989)

    Google Scholar 

  42. Staton, D.A., Deodhar, R.P., Soong, W.L., Miller, F.E.T.: Torque forecasting using the flowchart MMF AC, DC, and reluctance motors. IEEE Trans. Ind. Appl. 32(1), 180–188 (1996)

    Article  Google Scholar 

  43. Lawrenson, P.J.: Switched reluctance drives: a point of view. In: Proceedings of the 1992 International Conference on Electrical Motors, Manchester, pp. 12–21 (1992)

    Google Scholar 

  44. Slemon, G.R.: Chapter 2. In: Bose, B.K. (ed.) Power Electronics and Frequency Variation. IEEE Press, Piscataway (1997)

    Google Scholar 

  45. Miller, T.J.E.: Electronic Control of Switched Reluctance Motors. Newnes, Oxford (2001)

    Google Scholar 

  46. Chirila, A., Deacon, I., Navrapescu, V., Albu, M., Ghita, C.: On the model of a hybrid step motor. In: Proceedings of the IEEE International Conference on Industrial Electronics, pp. 496–501 (2008)

    Google Scholar 

  47. Huy, H., Brunelle, P., Sybille, G.: Design and implementation of a multi-motor model step by step Sim Power Systems Simulink. In: Proceedings of the IEEE International Conference on Industrial Electronics, pp. 437–442 (2008)

    Google Scholar 

  48. Nassereddine, M., Rizk, J., Nagrial, M.: Switched reluctance generator for wind energy applications. In: Proceedings of the World Academy Science, Motoring and Technology, vol. 31, pp. 126–130 (2008)

    Google Scholar 

  49. Nedic, V., Lipo, T.A.: Experimental verification voltage induced self-excitation of a switched reluctance generator. In: Proceedings of the Industrial Applications Conference, pp. 51–56 (2000)

    Google Scholar 

  50. Allawa, B., Gasbaoui, B., Mebarki, B.: PID configuration DC motor speed changing the control parameters using particle swarm optimization strategy. Leonardo Electron. J. Pract. Technol. 14, 19–32 (2009). ISSN1583-1078

    Google Scholar 

  51. Ellis, G.: Design Guide Control Systems. Academic Press, London (1991)

    Google Scholar 

  52. Gaing, Z.L.: A particle swarm optimization approach for optimum design of PID controller in the system. IEEE Trans. Energy Convers. Method 19(2), 284–291 (2004)

    Google Scholar 

  53. Karaboga, D., Kahuh, A.: PID controller parameters tuning using the tabu search algorithm. In: Proceedings of the IEEE Conference on Systems, Man, and Cybernetics, pp. 134–136 (1996)

    Google Scholar 

  54. Astrom, K.J., Hagglund, T.: PID controllers: theory, design, and tuning. ISA, Triangle Park (1995)

    Google Scholar 

  55. Daryabeigi, E., Arabic Markade, G., Lucas, C.: Interior permanent magnet synchronous motor (IPMSM), with an emotional learning developed brain based intelligent controller (BELBIC). In: Proceedings of the IEEE, IEMDC, pp. 1633–1640 (2009)

    Google Scholar 

  56. Rouhani, H., Jalili, M., Arabi, B., Eppler, W., Lucas, C.: Brain intelligent controller based on emotional learning applied to a neuro-fuzzy model of the micro-heat exchanger. Expert Syst. Appl. 32(3), 911–918 (2007)

    Article  Google Scholar 

  57. Wang, Y., Xia, C., Zhang, M., Liu, D.: Adaptive control for speed brushless DC motors after the genetic algorithm and RBF neural network. In: IEEE Proceedings of the CICA, pp. 1219–1222 (2007)

    Google Scholar 

  58. Bose, B.K.: Neural network applications in power electronics and drives a motor-introduction and perspective. IEEE Trans. Ind. Electron. 54(1), 14–33 (2007)

    Article  Google Scholar 

  59. Jamaly, M.R., Armani, A., Dehyadegari, M., Lucas, C., Navabi, Z.: Emotion FPGA: model-oriented approach. Expert Syst. Appl. 36(4), 7369–7378 (2009)

    Article  Google Scholar 

  60. Meireles, M.R.G., Almeida, P.E.M., Simões, M.G.: A complete review on industrial application of artificial neurons networks. IEEE Trans. Ind. Electron. 50(3), 585–601 (2003)

    Article  Google Scholar 

  61. Moren, J.: Emotions and learning: a model for calculating the amygdala. Ph.D. thesis, Lund University Cognitive 93 studies. University of Lund, Sweden (2002). ISSN 1101-8453

    Google Scholar 

  62. Lucas, C., Shahmirzadi, D., Sheikholeslami, N.: BELBIC presentation: intelligent control based on the brain emotional learning. Int. J. Intell. Autom. Soft Comput. 10(1), 11–22 (2004)

    Article  Google Scholar 

  63. Jamali, M.R., Arami, A., Hosseini, B., Moshiri, B., Lucas, C.: Real emotional control time for anti-tilt and positioning control SIMO crane. Int. J. Innov Comput Inform Control 4(9), 2333–2344 (2008)

    Google Scholar 

  64. Jamali, M.R., Dehyadegari, M.R., Arami, A., Lucas, C., Navabi, Z.: Real time emotional embedded controller. J. Neural Comput. Appl. 19(1), 13–19 (2009)

    Article  Google Scholar 

  65. Rahman, A., Milasi, R.M., Lucas, C., Arrabi, B.N., Radwan, T.S.: Implementation of emotional controller interior permanent magnet synchronous motor drive. IEEE Trans. Ind. Appl. 44(5), 1466–1476 (2008)

    Article  Google Scholar 

  66. Kassakian, J.G., Schlecht, M.F., Verghese, G.C.: Principles of Power Electronics. Addison-Wesley, Upper Saddle River (1991)

    Google Scholar 

  67. Krein, P.T.: Elements of Power Electronics. Oxford University Press, New York (1998)

    Google Scholar 

  68. Rashid, M.H.: Power Electronics, 3rd edn. Prentice Hall, Upper Saddle River (2003)

    Google Scholar 

  69. Hart, D.H.: Introduction to Power Electronics. Prentice-Hall, Upper Saddle River (1997)

    Google Scholar 

  70. Vas, P.: Sensorless Vector and Direct Torque Control. Oxford University Press, London (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gunapriya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this paper

Cite this paper

Gunapriya, B., Sabrigiriraj, M., Karthik, M., Deepa, B., Devi, R.N. (2017). Power Electronic Drives and Control Technology Status: Brief Review. In: Deiva Sundari, P., Dash, S., Das, S., Panigrahi, B. (eds) Proceedings of 2nd International Conference on Intelligent Computing and Applications. Advances in Intelligent Systems and Computing, vol 467. Springer, Singapore. https://doi.org/10.1007/978-981-10-1645-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1645-5_42

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1644-8

  • Online ISBN: 978-981-10-1645-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics