Skip to main content

Optoelectronic Fibers

  • Living reference work entry
  • First Online:
Handbook of Optical Fibers
  • 452 Accesses

Abstract

Fibers are one of the most fundamental material forms, made by nature or by humans. In particular, optical fibers now are widely used in a multitude of applications, ranging from telecommunications to monitoring structural integrity of bridges. Integration of materials with disparate electrical, optical, thermal, or mechanical properties into a single fiber with complex architecture and diverse functionalities presents new opportunities for extending fiber applications in numerous fields, especially as optoelectronic devices. This chapter presents the development of optoelectronic fibers, from the fundamentals to in-fiber device demonstration. Especially, the integration of semiconductor materials into fiber geometries provides a unique route to introduce new optoelectronic functionality into existing glass fiber technologies. Firstly, as the core material, multi-material fibers made of semiconductor materials such as silicon, germanium, and compound semiconductors are developed, which offer different advantages in terms of the material, geometry, and waveguiding properties. Then, three main fabrication approaches to produce these fibers are summarized, in which the first approach is based on traditional drawing tower technique, the second approach involves chemical deposition inside glass capillary templates, and the third approach takes advantage of in-fiber fluid instability phenomenon. Finally, future prospects and applications of this new class of fibers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • A.F. Abouraddy, M. Bayindir, G. Benoit, S.D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, Y. Fink, Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 6, 336–347 (2007)

    Article  Google Scholar 

  • G.P. Agrawal, Fiber-Optic Communication Systems, 4th edn. (Wiley, Hoboken, 2010)

    Book  Google Scholar 

  • J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A.M. Rao, M. Daw, S.R. Sharma, R. Shori, O. Stafsudd, R.R. Rice, D.R. Powers, Silicon optical fiber. Opt. Express 16, 18675–18683 (2008)

    Article  Google Scholar 

  • J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N.K. Hon, B. Jalali, R. Rice, Glass-clad single-crystal germanium optical fiber. Opt. Express 17, 8029–8035 (2009a)

    Article  Google Scholar 

  • J. Ballato, T. Hawkins, P. Foy, C. McMillen, L. Burka, J. Reppert, R. Podila, A. Rao, R. Rice, Binary III–V core semiconductor optical fiber. Opt. Express 18, 4972–4979 (2009b)

    Article  Google Scholar 

  • M. Bayindir, F. Sorin, S. Hart, O. Shapira, J.D. Joannopoulos, Y. Fink, Metal-insulator-semiconductor optoelectronic fibres. Nature 431, 826–829 (2004)

    Article  Google Scholar 

  • A. Canales, X. Jia, U. Froriep, R. Koppes, C. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, P. Anikeeva, Multimodal fibres for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015)

    Article  Google Scholar 

  • D. Coucheron, M. Fokine, N. Patil, D. Werner Breiby, O. Tore Buset, N. Healy, A.C. Peacock, T. Hawkins, M. Jones, J. Ballato, U. Gibson, Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres. Nat. Commun. 7, 13265 (2016)

    Article  Google Scholar 

  • P. Dragic, T. Hawkins, P. Foy, S. Morris, J. Ballato, Sapphire-derived all-glass optical fibres. Nat. Photonics 6, 627–633 (2012)

    Article  Google Scholar 

  • V.M. Glazov, S.N. Chizhevskaya, N.N. Glagoleva, Liquid Semiconductors (Plenum Press, New York, 1969)

    Book  Google Scholar 

  • A. Gumennik, L. Wei, G. Lestoquoy, A.M. Stolyarov, X. Jia, P.H. Rekemeyer, M.J. Smith, X. Liang, S.G. Johnson, S. Gradeak, A.F. Abouraddy, J.D. Joannopoulos, Y. Fink, Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities. Nat. Commun. 4, 2216 (2013)

    Article  Google Scholar 

  • R. He, P.J.A. Sazio, A.C. Peacock, N. Healy, J.R. Sparks, M. Krishnamurthi, V. Gopalan, J.V. Badding, Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres. Nat. Photonics 6, 174–179 (2012)

    Article  Google Scholar 

  • N. Healy, S. Mailis, N.M. Bulgakova, P.J.A. Sazio, T.D. Day, J.R. Sparks, H.Y. Cheng, J.V. Badding, A.C. Peacock, Extreme electronic bandgap modification in laser-crystallized silicon optical fibres. Nat. Mater. 13, 1122–1127 (2014)

    Article  Google Scholar 

  • C. Hou, X. Jia, L. Wei, A.M. Stolyarov, O. Shapira, J.D. Joannopoulos, Y. Fink, Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high throughput reactive fiber drawing. Nano Lett. 13, 975–979 (2013)

    Article  Google Scholar 

  • C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. Joannopoulos, Y. Fink, Crystalline silicon core fibres from aluminium core preforms. Nat. Commun. 6, 6248 (2015)

    Article  Google Scholar 

  • B.R. Jackson, P.J.A. Sazio, J.V. Badding, Single-crystal semiconductor wires integrated into microstructured optical fibers. Adv. Mat. 20, 1135–1140 (2008)

    Article  Google Scholar 

  • K. Kakimoto, M. Eguchi, H. Watanabe, T. Hibiya, Natural and forced convection of molten silicon during czochralski single crystal growth. J. Cryst. Growth 94, 412–420 (1989)

    Article  Google Scholar 

  • J.J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D.S. Deng, X. Liang, S.G. Johnson, Y. Fink, A.F. Abouraddy, Structured spheres generated by an in-fibre fluid instability. Nature 487, 463–467 (2012)

    Article  Google Scholar 

  • P. KoÅ¡tál, J. Málek, Viscosity of selenium melt. J. Non-Crystal. Solid 356, 2803–2806 (2010)

    Article  Google Scholar 

  • K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, L. Wei, Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference. Appl. Phys. Lett. 109, 101101 (2016)

    Article  Google Scholar 

  • M. Lipson, Guiding, modulating, and emitting light on silicon challenges and opportunities. J. Lightwave Technol. 23, 4222–4238 (2005)

    Article  Google Scholar 

  • S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, R. Rice, J. Ballato, Reactive molten core fabrication of silicon optical fiber. Opt. Mater. Express 1, 1141–1149 (2011)

    Article  Google Scholar 

  • D. Ofte, The viscosities of liquid uranium, gold and lead. J. Nucl. Mater. 22, 28–32 (1967)

    Article  Google Scholar 

  • A.C. Peacock, J.R. Sparks, N. Healy, Semiconductor optical fibres: progress and opportunities. Laser Photonics Rev. 8, 53–72 (2014)

    Article  Google Scholar 

  • A.C. Peacock, U. Gibson, J. Ballato, Silicon optical fibres – past, present, and future. Adv. Phys. X, 1–22 (2016)

    Google Scholar 

  • R.F. Pierret, Semiconductor Device Fundamentals, 2nd edn. (Addison-Wesley, Boston, 1996)

    Google Scholar 

  • G.T. Reed, A.P. Knights, Silicon Photonics: An Introduction (Wiley, Chichester, 2004)

    Book  Google Scholar 

  • P. Russell, Photonic crystal fibers. Science 299, 358–362 (2003)

    Article  Google Scholar 

  • P.J.A. Sazio, A. Amezcua-Correa, C.E. Finlayson, J.R. Hayes, T.J. Scheidemantel, N.F. Baril, B.R. Jackson, D.-J. Won, F. Zhang, E.R. Margine, V. Gopalan, V.H. Crespi, J.V. Badding, Microstructured optical fibers as high-pressure microfluidic reactors. Science 311, 1583–1586 (2006)

    Article  Google Scholar 

  • M. Schmidt, A. Argyros, F. Sorin, Hybrid optical fibers – an innovative platform for in-fiber photonic devices. Adv. Opt. Mater. 4, 13 (2016)

    Article  Google Scholar 

  • B.L. Scott, K. Wang, G. Pickrell, Fabrication of n-type silicon optical fiber. IEEE Photon. Technol. Lett. 21, 1798–1800 (2009)

    Article  Google Scholar 

  • S. Shabahang, G. Tao, J.J. Kaufman, Y. Qiao, L. Wei, T. Bouchenot, A. Gordon, Y. Fink, Y. Bai, R.S. Hoy, A.F. Abouraddy, Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing. Nature 534, 529–533 (2016)

    Article  Google Scholar 

  • J.R. Sparks, R. He, N. Healy, M. Krishnamurthi, A.C. Peacock, P.J.A. Sazio, V. Gopalan, J.V. Badding, Zinc selenide optical fibers. Adv. Mat. 23, 1647–1651 (2011)

    Article  Google Scholar 

  • A.M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S.L. Chua, J.D. Joannopoulos, Y. Fink, Microfluidic directional emission control of an azimuthally polarized radial fibre laser. Nat. Photon. 4, 229–233 (2012)

    Article  Google Scholar 

  • G. Tao, A.M. Stolyarov, A.F. Abouraddy, Multimaterial fibers. I. J. Appl. Glass Sci. 3, 349–368 (2012)

    Article  Google Scholar 

  • A.S. Tverjanovich, Temperature dependence of the viscosity of chalcogenide glass-forming melts. Glas. Phys. Chem. 29, 532–536 (2003)

    Article  Google Scholar 

  • G. Urbain, Y. Bottinga, P. Richet, Viscosity of liquid silica, silicates and alumino-silicates. Geochim. Cosmochim. Acta 46, 1061–1072 (1982)

    Article  Google Scholar 

  • S. Wang, T. Zhang, K. Li, S. Ma, M. Chen, P. Lu, L. Wei, Flexible piezoelectric fibers for acoustic sensing and positioning. Adv. Electron. Mater. 3, 1600449 (2017)

    Article  Google Scholar 

  • L. Wei, C. Hou, E. Levy, G. Lestoquoy, A. Gumennik, A.F. Abouraddy, J.D. Joannopoulos, Y. Fink, Optoelectronic fibers via selective amplification of in-fiber capillary instabilities. Adv. Mater. 29, 1603033 (2017)

    Article  Google Scholar 

  • N. Zhang, H. Liu, A.M. Stolyarov, T. Zhang, K. Li, P. Shum, Y. Fink, X. Sun, L. Wei, Azimuthally polarized radial emission from a quantum dot fiber laser. ACS Photon. 3, 2275–2279 (2016a)

    Article  Google Scholar 

  • N. Zhang, G. Humbert, Z. Wu, K. Li, P. Shum, M. Zhang, Y. Cui, J. Auguste, X. Dinh, L. Wei, In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber. Opt. Express 24, 27674–27682 (2016b)

    Article  Google Scholar 

  • M. Zhang, D. Hu, P. Shum, Z. Wu, K. Li, T. Huang, L. Wei, Design and analysis of surface plasmon resonance sensor based on high-birefringent microstructured optical fiber. J. Opt. 18, 65005–65011 (2016c)

    Article  Google Scholar 

  • N. Zhang, G. Humbert, T. Gong, P. Shum, K. Li, J. Auguste, Z. Wu, J. Hu, F. Luan, Q.X. Dinh, M. Olivo, L. Wei, Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing. Sensors Actuators B Chem. 223, 195–201 (2016d)

    Article  Google Scholar 

  • T. Zhang, K. Li, C. Li, S. Ma, H.H. Hng, L. Wei, Mechanically durable and flexible thermoelectric films from PEDOT:PSS/PVA/Bi0.5Sb1.5Te3 nanocomposites. Adv. Electron. Mater. 3, 1600554 (2017a)

    Article  Google Scholar 

  • M. Zhang, K. Li, P. Shum, X. Yu, S. Zeng, Z. Wu, Q. Wang, K. Yong, L. Wei, Hybrid graphene/gold plasmonic fiber-optic biosensor. Adv. Mater. Technol 2, 1600185 (2017b)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wei .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wei, L. (2018). Optoelectronic Fibers. In: Peng, GD. (eds) Handbook of Optical Fibers. Springer, Singapore. https://doi.org/10.1007/978-981-10-1477-2_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1477-2_40-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1477-2

  • Online ISBN: 978-981-10-1477-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics