Skip to main content

User-Cognizant Scalable Video Transmission over Heterogeneous Cellular Networks

  • Reference work entry
  • First Online:
Handbook of Cognitive Radio
  • 1005 Accesses

Abstract

With the increase of mobile video applications in people’s daily life as well as industrial manufacture, such as video streaming, surveillance, and so on, video has been the main service in cellular networks. Operators and service providers are struggling to enhance the mobile video service, while user requirements for abundant, high-definition, and low-delay video have nearly drained the transmission capacity of current networks. Moreover, the large population of user equipments (UEs) exhibit differentiated video demands and various network transmission environments. Traditional networking, which is static and base station (BS) concentric, can hardly deal with these challenges. Thus, adaptive video transmission schemes are needed by jointly considering the interplay among user demand, video source characteristics, and networking. This work focuses on user-cognizant scalable video transmission over heterogeneous cellular networks. The video source is encoded using scalable video coding, which enables dynamic adaption of source information to the requirements of UEs and is suitable for cellular networks in which the transmission link quality varies substantially over space and time. Three novel transmission schemes are proposed, layered digital transmission, layered hybrid digital-analog transmission, and cooperative digital transmission. Leveraging tools from stochastic geometry, a comprehensive analysis is conducted focusing on three key performance metrics: outage probability, high-definition probability, and average distortion. The associated spectrum allocation and video transmission are chosen based on the user-cognizant information, such as the requirements for video service, wireless channel status, and the connections with the BSs. The results show that the proposed user-cognizant transmission schemes can provide a scalable video experience for UEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the H. 264/AVC standard. IEEE Trans Circuits Syst Video Technol 17(9):1103–1120

    Article  Google Scholar 

  2. Sullivan GJ, Boyce JM, Chen Y, Ohm JR (2013) Standardized extensions of high efficiency video coding (HEVC). IEEE J Sel Top Signal Process 7(6):1001–1016

    Article  Google Scholar 

  3. Chandrasekhar V, Andrews JG, Gatherer A (2008) Femtocell networks: a survey. IEEE Commun Mag 46(9):59–67

    Article  Google Scholar 

  4. Ko C-H, Wei H-Y (2011) On-demand resource-sharing mechanism design in two-tier OFDMA femtocell networks. IEEE Trans Veh Technol 60(3):1059–1071

    Article  Google Scholar 

  5. Schierl T, Stockhammer T, Wiegand T (2007) Mobile video transmission using scalable video coding. IEEE Trans Circuits Syst Video Technol 17(9):1204–1217

    Article  Google Scholar 

  6. Bocus MZ, Coon JP, Canagarajah CN, Armour S, Doufexi A, McGeehan JP (2012) Per-subcarrier antenna selection for H. 264 MGS/CGS video transmission over cognitive radio networks. IEEE Trans Veh Technol 61(3):1060–1073

    Article  Google Scholar 

  7. Radhakrishnan R, Nayak A (2012) Cross layer design for efficient video streaming over LTE using scalable video coding. In: Proceedings of IEEE International Conference on Communications, pp 6509–6513

    Google Scholar 

  8. Gupta V, Somayazulu S, Himayat N, Verma H, Bisht M, Nandwani V (2012) Design challenges in transmitting scalable video over multi-radio networks. In: Proceedings of IEEE Globecom Workshops, pp 46–51

    Google Scholar 

  9. Poularakis K, Iosifidis G, Argyriou A, Tassiulas L (2014) Video delivery over heterogeneous cellular networks: optimizing cost and performance. In: Proceedings of IEEE INFOCOM, pp 1078–1086

    Google Scholar 

  10. Chen C, Zhu X, De Veciana G, Bovik AC, Heath RW (2013) Rate adaptation and admission control for video transmission with subjective quality constraints. IEEE J Sel Top Signal Process 9(1):22–36

    Article  Google Scholar 

  11. Thakolsri S, Khan S, Steinbach E, Kellerer W (2009) QoE-driven cross-layer optimization for high speed downlink packet access. J Commun 4(9):669–680

    Article  Google Scholar 

  12. Fu B, Staehle D, Kunzmann G, Steinbach E, Kellerer W (2015) QoE-based SVC layer dropping in LTE networks using content-aware layer priorities. ACM Trans Multimedia Comput Commun Appl 12(1):1–23

    Article  Google Scholar 

  13. Jakubczak S, Katabi D (2011) A cross-layer design for scalable mobile video. In: Proceedings of ACM Proceedings of Annual International Conference on Mobile Computing and Networking, pp 289–300

    Google Scholar 

  14. Gao Y, Tuncel E (2010) New hybrid digital/analog schemes for transmission of a Gaussian source over a Gaussian channel. IEEE Trans Inf Theory 56(12):6014–6019

    Article  MathSciNet  Google Scholar 

  15. Minero P, Lim SH, Kim Y-H (2015) A unified approach to hybrid coding. IEEE Trans Inf Theory 61(4):1509–1523

    Article  MathSciNet  Google Scholar 

  16. Yu L, Li H, Li W (2014) Wireless scalable video coding using a hybrid digital-analog scheme. IEEE Trans Circuits Syst Video Technol 24(2):331–345

    Article  MathSciNet  Google Scholar 

  17. Altieri A, Vega LR, Galarza CG, Piantanida P (2011) Cooperative strategies for interference-limited wireless networks. In: IEEE International Symposium on Information Theory Proceedings (ISIT), pp 1623–1627

    Google Scholar 

  18. Lee J, Kim Y, Lee H, Ng BL, Mazzarese D, Liu J, Xiao W, Zhou Y (2012) Coordinated multipoint transmission and reception in lte-advanced systems. IEEE Commun Mag 50(11):44–50

    Article  Google Scholar 

  19. Nigam G, Minero P, Haenggi M (2013) Coordinated multipoint in heterogeneous networks: a stochastic geometry approach. In: IEEE Globecom Workshops, pp 145–150

    Google Scholar 

  20. Nigam G, Minero P, Haenggi M (2014) Coordinated multipoint joint transmission in heterogeneous networks. IEEE Trans Commun 62(11):4134–4146

    Article  Google Scholar 

  21. Bang I, Kim SH, Kim SM, Sung DK (2012) Energy-efficient subchannel allocation scheme based on adaptive base station cooperation in downlink cellular networks. In: Wireless Communications and Networking Conference (WCNC), pp 2434–2439

    Google Scholar 

  22. Zhang X, Shen XS, Xie L-L (2014) Joint subcarrier and power allocation for cooperative communications in LTE-advanced networks. IEEE Trans Wirel Commun 13(2):658–668

    Article  Google Scholar 

  23. Kosmanos D, Argyriou A, Liu Y, Tassiulas L, Ci S (2015) A cooperative protocol for video streaming in dense small cell wireless relay networks. Signal Process Image Commun 31: 151–160

    Article  Google Scholar 

  24. Chan CC, Hanly SV (2001) Calculating the outage probability in a CDMA network with spatial Poisson traffic. IEEE Trans Veh Technol 50(1):183–204

    Article  Google Scholar 

  25. Haenggi M, Andrews JG, Baccelli F, Dousse O, Franceschetti M (2009) Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE J Sel Areas Commun 27(7):1029–1046

    Article  Google Scholar 

  26. ElSawy H, Hossain E, Haenggi M (2013) Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a survey. IEEE Commun Surv Tutorials 15(3):996–1019

    Article  Google Scholar 

  27. Andrews JG, Baccelli F, Ganti RK (2011) A tractable approach to coverage and rate in cellular networks. IEEE Trans Commun 59(11):3122–3134

    Article  Google Scholar 

  28. Dhillon HS, Ganti RK, Baccelli F, Andrews JG (2012) Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE J Sel Areas Commun 30(3):550–560

    Article  Google Scholar 

  29. Baccelli F, Blaszczyszyn B (2009) Stochastic geometry and wireless networks: volume 1 – theory, vol 1. Now Publishers Inc, Boston

    MATH  Google Scholar 

  30. Haenggi M (2012) Stochastic geometry for wireless networks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  31. Wu L, Zhong Y, Zhang W, Haenggi M (2015) Scalable transmission over heterogenous networks. In: Proceedings of International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pp 459–466

    Google Scholar 

  32. Wu L, Zhong Y, Zhang W, Haenggi M (2016) Scalable transmission over heterogeneous network: a stochastic geometry analysis. IEEE Trans Veh Technol 66(2):1845–1859

    Article  Google Scholar 

  33. Ferenc J-S, Néda Z (2007) On the size distribution of Poisson Voronoi cells. Phys A Stat Mech Appl 385(2):518–526

    Article  Google Scholar 

  34. Zhong Y, Zhang W (2013) Multi-channel hybrid access femtocells: a stochastic geometric analysis. IEEE Trans Commun 61(7):3016–3026

    Article  Google Scholar 

  35. Cheung WC, Quek TQ, Kountouris M (2012) Throughput optimization, spectrum allocation, and access control in two-tier femtocell networks. IEEE J Sel Areas Commun 30(3):561–574

    Article  Google Scholar 

  36. Prabhakaran VM, Puri R, Ramchandran K (2011) Hybrid digital-analog codes for source-channel broadcast of Gaussian sources over Gaussian channels. IEEE Trans Inf Theory 57(7):4573–4588

    Article  MathSciNet  Google Scholar 

  37. Kochman Y, Zamir R (2011) Analog matching of colored sources to colored channels. IEEE Trans Inf Theory 57(6):3180–3195

    Article  MathSciNet  Google Scholar 

  38. Wildemeersch M, Quek TQ, Kountouris M, Rabbachin A, Slump CH (2014) Successive interference cancellation in heterogeneous networks. IEEE Trans Commun 62(12):4440–4453

    Article  Google Scholar 

  39. Xu X, Gunduz D, Erkip E, Wang Y (2005) Layered cooperative source and channel coding. In: Proceedings of IEEE International Conference on Communications, pp 1200–1204

    Google Scholar 

  40. Wu L, Zhang W (2016) Caching-based scalable video transmission over cellular networks. IEEE Commun Lett 20(6):1156–1159

    Article  Google Scholar 

  41. Luby M (2002) LT codes. In: Symposium on Foundations of Computer Science, pp 271–280

    Google Scholar 

  42. Shokrollahi A (2006) Raptor codes. IEEE/ACM Trans Netw 14(SI):2551–2567

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wu, L., Zhang, W. (2019). User-Cognizant Scalable Video Transmission over Heterogeneous Cellular Networks. In: Zhang, W. (eds) Handbook of Cognitive Radio . Springer, Singapore. https://doi.org/10.1007/978-981-10-1394-2_36

Download citation

Publish with us

Policies and ethics