Skip to main content

Cognitive Radio Networks for Delay-Sensitive Applications: Games and Learning

  • Reference work entry
  • First Online:
Handbook of Cognitive Radio

Abstract

We have witnessed an explosion in wireless video traffic in recent years. Video applications are bandwidth intensive and delay sensitive and hence require efficient utilization of spectrum resources. Born to utilize wireless spectrum more efficiently, cognitive radio networks are promising candidates for deployment of wireless video applications. In this chapter, we introduce our recent advances in foresighted resource allocation mechanisms that enable multiuser wireless video applications over cognitive radio networks. The introduced resource allocation mechanisms are foresighted, in the sense that they optimize the long-term video quality of the wireless users. Due to the temporal coupling of delay-sensitive video applications, such foresighted mechanisms outperform mechanisms that maximize the short-term video quality. Moreover, the introduced resource allocation mechanisms allow wireless users to optimize while learning the unknown dynamics in the environment (e.g., incoming traffic, primary user activities). Finally, we introduce variations of the mechanisms that are suitable for networks with self-interested users. These mechanisms ensure efficient video resource allocation even when the users are self-interested and aim to maximize their individual video quality. The foresighted resource allocation mechanisms introduced in this chapter are built upon our theoretical advances in multiuser Markov decision processes, reinforcement learning, and dynamic mechanism design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fattahi A, Fu F, van der Schaar M, Paganini F (2007) Mechanism-based resource allocation for multimedia transmission over spectrum agile wireless networks. IEEE J Sel Areas Commun 25(3):601–612

    Article  Google Scholar 

  2. Fu F, van der Schaar M (2007) Noncollaborative resource management for wireless multimedia applications using mechanism design. IEEE Trans Multimedia 9(4):851–868

    Article  Google Scholar 

  3. Fu F, Stoenescu TM, van der Schaar M (2007) A pricing mechanism for resource allocation in wireless multimedia applications. IEEE J Sel Top Sign Process, Spec Issue Netw-Aware Multimedia Process Commun 1(2):264–279

    Article  Google Scholar 

  4. Fu F, van der Schaar M (2009) Learning to compete for resources in wireless stochastic games. IEEE Trans Veh Tech 58(4):1904–1919

    Article  Google Scholar 

  5. van der Schaar M, Fu F (2009) Spectrum access games and strategic learning in cognitive radio networks for delay-critical applications. Proc IEEE Spec Issue Cogn Radio 97(4):720–740

    Google Scholar 

  6. Fu F, van der Schaar M (2010) A systematic framework for dynamically optimizing multi-user video transmission. IEEE J Sel Areas Commun 28(3):308–320

    Article  Google Scholar 

  7. Xiao Y, van der Schaar M (2015) Optimal foresighted multi-user wireless video. IEEE J Sel Top Sign Process, Spec Issue Visual Sign Process Wirel Netw 9(1):89–101

    Article  Google Scholar 

  8. Yu Y-J, Hsiu P-C, Pang A-C (2012) Energy-efficient video multicast in 4G wireless systems. IEEE Trans Mob Comput 11(10):1508–1522

    Article  Google Scholar 

  9. van der Schaar M, Andreopoulos Y, Hu Z (2006) Optimized scalable video streaming over IEEE 802.11 a/e HCCA wireless networks under delay constraints. IEEE Trans Mob Comput 5(6):755–768

    Article  Google Scholar 

  10. Su G-M, Han Z, Wu M, Liu KJR (2007) Joint uplink and downlink optimization for real-time multiuser video streaming over WLANs. IEEE J Sel Top Sign Process 1(2):280–294

    Article  Google Scholar 

  11. Zhang X, Du Q (2007) Cross-layer modeling for QoS-driven multimedia multicast/broadcast over fading channels in mobile wireless networks. IEEE Commun Mag 45(8):62–70

    Article  Google Scholar 

  12. Huang J, Li Z, Chiang M, Katsaggelos AK (2008) Joint source adaptation and resource allocation for multi-user wireless video streaming. IEEE Trans Circuits Syst Video Technol 18(5):582–595

    Article  Google Scholar 

  13. Maani E, Pahalawatta P, Berry R, Pappas TN, Katsaggelos AK (2008) Resource allocation for downlink multiuser video transmission over wireless lossy networks. IEEE Trans Image Process 17(9):1663–1671

    Article  MathSciNet  Google Scholar 

  14. Chou P, Miao Z (2006) Rate-distortion optimized streaming of packetized media. IEEE Trans Multimedia 8(2):390–404

    Article  Google Scholar 

  15. Huang J, Wang H, Qian Y (2017) Game user-oriented multimedia transmission over cognitive radio networks. IEEE Trans Circuits Syst Video Tech 27(1):198–208

    Article  Google Scholar 

  16. Ji X, Huang J, Chiang M, Lafruit G, Catthoor F (2009) Scheduling and resource allocation for SVC streaming over OFDM downlink systems. IEEE Trans Circuits Syst Video Technol 19(10):1549–1555

    Article  Google Scholar 

  17. Fu F, van der Schaar M (2012) Structural solutions for dynamic scheduling in wireless multimedia transmission. IEEE Trans Circuits Syst Video Technol 22(5):727–739

    Article  Google Scholar 

  18. Wu Y, Hu F, Kumar S, Zhu Y, Talari A, Rahnavard N, Matyjas J (2014) A learning-based QoE-driven spectrum handoff scheme for multimedia transmissions over cognitive radio networks. IEEE J Sel Areas Comm 32(11):2134–2148

    Article  Google Scholar 

  19. Shah G, Alagoz F, Fadel E, Akan O (2014) A spectrum-aware clustering for efficient multimedia routing in cognitive radio sensor networks. IEEE Trans Veh Tech 63(7):3369–3380

    Article  Google Scholar 

  20. He Z, Mao S, Kompella S (2016) Quality of experience driven multi-user video streaming in cellular cognitive radio networks with single channel access. IEEE Trans Multimedia 18(7):1401–1413

    Article  Google Scholar 

  21. Wang H, Qian Y, Sharif H (2013) Multimedia communications over cognitive radio networks for smart grid applications. IEEE Wirel Commun 20(4):125–132

    Article  Google Scholar 

  22. Chen W, Neely MJ, Mitra U (2008) Energy-efficient transmission with individual packet delay constraints. IEEE Trans Inform Theory 54(5):2090–2109

    Article  MathSciNet  Google Scholar 

  23. Fu F, van der Schaar M (2012) Structure-aware stochasticcontrol for transmission scheduling. IEEE Trans Veh Tech 61(9):3931–3945

    Article  Google Scholar 

  24. Zhang Q, Kassam SA (1999) Finite-state Markov model for Rayleigh fading channels. IEEE Trans Commun 47(11):1688–1692

    Article  Google Scholar 

  25. Bertsekas D, Gallager R (1987) Data networks. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  26. Hawkins J (2003) A Lagrangian decomposition approach to weakly coupled dynamic optimization problems and its applications. PhD dissertation, MIT, Cambridge

    Google Scholar 

Further Reading

  1. Khan S, Sgroi M, Peng Y, Steinbach E, Kellerer W (2006) Application-driven cross layer optimization for video streaming over wireless networks. IEEE Commun Mag 44(1):122–130

    Article  Google Scholar 

  2. De Vleeschouwer C, Frossard P (2007) Dependent packet transmission policies in rate-distortion optimized media scheduling. IEEE Trans Multimedia 9(6):1241–1258

    Article  Google Scholar 

  3. Li Z, Zhai F, Katsaggelos A (2008) Joint video summarization and transmission adaptation for energy-efficient wireless video streaming. EURASIP J Adv Sign Process Spec Issue Wirel Video 2008: 1–11

    Google Scholar 

  4. Tizon N, Pesquet-Popescu B (2008) Scalable and media aware adaptive video streaming over wireless networks. EURASIP J Adv Sign Process 2008:11, Article ID 218046

    Google Scholar 

  5. Wang H, Ortega A (2009) Rate-distortion optimized scheduling for redundant video representations. IEEE Trans Image Process 18(2):225–240

    Article  MathSciNet  Google Scholar 

  6. IEEE Standard for Local and Metropolitan Area Networks, Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC Sublayer. IEEE Computer Society, 16 Apr 2012. Online at: http://standards.ieee.org/getieee802/download/802.15.4e-2012.pdf

  7. Kushner H, Yin G (2003) Stochastic approximation and recursive algorithms and applications. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanzhang Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xiao, Y., der Schaar, M.v. (2019). Cognitive Radio Networks for Delay-Sensitive Applications: Games and Learning. In: Zhang, W. (eds) Handbook of Cognitive Radio . Springer, Singapore. https://doi.org/10.1007/978-981-10-1394-2_28

Download citation

Publish with us

Policies and ethics