Skip to main content

Management of Distant Metastasis in Differentiated Thyroid Cancer

  • Chapter
  • First Online:
Evidence-Based Endocrine Surgery

Abstract

A 71-year-old male had an incidental finding of large T8 vertebral mass on a trauma computed tomography (CT) series. Upon questioning, the patient gave a history of worsening back pain over the last 6 months. Biopsy of the vertebral mass revealed metastatic follicular thyroid carcinoma (FTC). Physical examination revealed a firm 3.5 cm right thyroid mass, and ultrasound confirmed a solitary thyroid nodule without lymphadenopathy. Staging fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) demonstrated mild FDG avidity within the large mass eroding the T8 vertebral body with extension into the vertebral canal, an avid right thyroid nodule but no other distant disease. In this chapter we discuss the management considerations for a patient with metastatic differentiated thyroid carcinoma (DTC), awareness of common clinical presentations and useful biochemical and imaging investigations pertaining to the staging and workup of metastatic disease. Surgical considerations for the primary tumour and critical metastatic sites are discussed. The importance of appropriate thyroid-stimulating hormone (TSH) suppression as an oncologic therapy and an overview of the principles of treatment with radioactive iodine (RAI) are provided, including strategies to optimise iodine uptake and choice of administered activity (empiric versus dosimetry). Practical advice is provided regarding new registered multikinase receptor treatments such as lenvatinib and sorafenib including indications for therapy and management of common side effects. Novel treatment approaches such as thyroid redifferentiation therapy to restore iodine avidity to radioiodine-resistant disease are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. La Vecchia C, Malvezzi M, Bosetti C, et al. Thyroid cancer mortality and incidence: a global overview. Int J Cancer. 2015;136:2187–95.

    Article  PubMed  Google Scholar 

  2. Tuttle RM. Risk-adapted management of thyroid cancer. Endocr Pract. 2008;14:764–74.

    Article  PubMed  Google Scholar 

  3. Ito Y, Miyauchi A, Kihara M, Higashiyama T, Kobayashi K, Miya A. Patient age is significantly related to the progression of papillary microcarcinoma of the thyroid under observation. Thyroid. 2014;24:27–34.

    Article  CAS  PubMed  Google Scholar 

  4. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–133.

    Article  PubMed  Google Scholar 

  5. Nikiforov YE, Seethala RR, Tallini G, et al. Encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent Tumors. JAMA Oncol. 2016;2:1023–9.

    Article  PubMed  Google Scholar 

  6. Kwong N, Marqusee E, Gordon MS, et al. Longterm, treatment-free survival in select patients with distant metastatic papillary thyroid cancer. Endocr Connect. 2014;3:207–14.

    Article  PubMed  Google Scholar 

  7. Durante C, Haddy N, Baudin E, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91:2892–9.

    Article  CAS  PubMed  Google Scholar 

  8. Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B, et al. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst. 2003;95:625–7.

    Article  CAS  PubMed  Google Scholar 

  9. Soares P, Trovisco V, Rocha AS, Lima J, Castro P, Preto A, et al. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene. 2003;22:4578–80.

    Article  CAS  Google Scholar 

  10. Namba H, Nakashima M, Hayashi T, Hayashida N, Maeda S, Rogounovitch TI, et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab. 2003;88:4393–7.

    Article  CAS  Google Scholar 

  11. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–7.

    CAS  PubMed  Google Scholar 

  12. Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer. 2005;12:245–62.

    Article  CAS  Google Scholar 

  13. Lemoine NR, Mayall ES, Wyllie FS, Farr CJ, Hughes D, Padua RA, et al. Activated ras oncogenes in human thyroid cancers. Cancer Res. 1988;48:4459–63.

    CAS  Google Scholar 

  14. Suarez HG, Du Villard JA, Caillou B, Schlumberger M, Tubiana M, Parmentier C, et al. Detection of activated ras oncogenes in human thyroid carcinomas. Oncogene. 1988;2:403–6.

    CAS  Google Scholar 

  15. Frattini M, Ferrario C, Bressan P, Balestra D, De Cecco L, Mondellini P, et al. Alternative mutations of BRAF, RET and NTRK1 are associated with similar but distinct gene expression patterns in papillary thyroid cancer. Oncogene. 2004;23:7436–40.

    Article  CAS  Google Scholar 

  16. Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell. 1990;60:557–63.

    Article  CAS  Google Scholar 

  17. Pierotti MA, Bongarzone I, Borrello MG, Mariani C, Miranda C, Sozzi G, et al. Rearrangements of TRK proto-oncogene in papillary thyroid carcinomas. J Endocrinol Investig. 1995;18:130–3.

    Article  CAS  Google Scholar 

  18. Garraway LA, Lander ES. Lessons from the cancer genome. Cell. 2013;153:17–37.

    Article  CAS  Google Scholar 

  19. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–90.

    Article  Google Scholar 

  20. Dinneen SF, Valimaki MJ, Bergstralh EJ, et al. Distant metastases in papillary thyroid carcinoma: 100 cases observed at one institution during 5 decades. J Clin Endocrinol Metab. 1995;80:2041–5.

    CAS  Google Scholar 

  21. Schlumberger M, Challeton C, De Vathaire F, et al. Radioactive iodine treatment and external radiotherapy for lung and bone metastases from thyroid carcinoma. J Nucl Med. 1996;37:598–605.

    CAS  Google Scholar 

  22. Mihailovic J, Stefanovic L, Malesevic M. Differentiated thyroid carcinoma with distant metastases: probability of survival and its predicting factors. Cancer Biother Radiopharm. 2007;22:250–5.

    Article  CAS  Google Scholar 

  23. Lee J, Soh EY. Differentiated thyroid carcinoma presenting with distant metastasis at initial diagnosis. Ann Surg. 2010;251:114–9.

    Article  Google Scholar 

  24. Al-Dhahri SF, Al-Amro AS, Al-Shakwer W, et al. Cerebellar mass as a primary presentation of papillary thyroid carcinoma: case report and literature review. Head Neck Oncol. 2009;1:23.

    Article  PubMed  Google Scholar 

  25. Lin JD, Huang MJ, Juang JH, et al. Factors related to the survival of papillary and follicular thyroid carcinoma patients with distant metastases. Thyroid. 1999;9:1227–35.

    Article  CAS  Google Scholar 

  26. Giovanella L, Clark P, Chiovato L, et al. Thyroglobulin measurement using highly sensitive assays in patients with differentiated thyroid cancer: a clinical position paper. Eur J Endocrinol. 2014;171:R33–46.

    Article  CAS  PubMed  Google Scholar 

  27. Giovanella L, Treglia G, Sadeghi R, et al. Unstimulated high-sensitive thyroglobulin in follow-up of differentiated thyroid cancer patients: a metaanalysis. J Clin Endocrinol Metab. 2014;99:440–7.

    Article  CAS  Google Scholar 

  28. Spencer C, LoPresti J, Fatemi S. How sensitive (second-generation) thyroglobulin measurement is changing paradigms for monitoring patients with differentiated thyroid cancer, in the absence or presence of thyroglobulin autoantibodies. Curr Opin Endocrinol Diabetes Obes. 2014;21:394–404.

    Article  CAS  PubMed  Google Scholar 

  29. Robbins RJ, Srivastava S, Shaha A, Ghossein R, Larson SM, Fleisher M, Tuttle RM. Factors influencing the basal and recombinant human thyrotropin-stimulated serum thyroglobulin in patients with metastatic thyroid carcinoma. J Clin Endocrinol Metab. 2004;89:6010–6.

    Article  CAS  Google Scholar 

  30. Cherk MH, Francis P, Topliss DJ, et al. Incidence and implications of negative serum thyroglobulin but positive I-131 whole-body scans in patients with well-differentiated thyroid cancer prepared with rhTSH or thyroid hormone withdrawal. Clin Endocrinol. 2012;76:734–40.

    Article  CAS  Google Scholar 

  31. Ruan M, Shen Y, Chen L, et al. RECIST 1.1 and serum thyroglobulin measurements in the evaluation of responses to sorafenib in patients with radioactive iodine-refractory differentiated thyroid carcinoma. Oncol Lett. 2013;6:480–6.

    Article  PubMed  Google Scholar 

  32. Aide N, Heutte N, Rame JP, et al. Clinical relevance of single-photon emission computed tomography/computed tomography of the neck and thorax in postablation (131)I scintigraphy for thyroid cancer. J Clin Endocrinol Metab. 2009;94:2075–84.

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt D, Szikszai A, Linke R, et al. Impact of 131I SPECT/spiral CT on nodal staging of differentiated thyroid carcinoma at the first radioablation. J Nucl Med. 2009;50:18–23.

    Article  PubMed  Google Scholar 

  34. Van Nostrand D, Moreau S, Bandarau VV, et al. (124)I positron emission tomography versus (131)I planar imaging in the identification of residual thyroid tissue and/or metastasis in patients who have well-differentiated thyroid cancer. Thyroid. 2010;20:879–83.

    Article  PubMed  Google Scholar 

  35. Ruhlmann M, Jentzen W, Ruhlmann V, et al. High level of agreement between pretherapeutic 124I PET and intratherapeutic 131I imaging in detecting iodine-positive thyroid cancer metastases. J Nucl Med. 2016;57:1339–42.

    Article  CAS  PubMed  Google Scholar 

  36. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  CAS  Google Scholar 

  37. Pattison DA, Hofman MS. Role of fluorodeoxyglucose PET/computed tomography in targeted radionuclide therapy for endocrine malignancies. PET Clin. 2015;10:461–76.

    Article  Google Scholar 

  38. Robbins T, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006;91:498–505.

    Article  CAS  PubMed  Google Scholar 

  39. Gasparre G, Porcelli AM, Bonora E, et al. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumours. Proc Natl Acad Sci. 2007;104:9001–6.

    Article  CAS  PubMed  Google Scholar 

  40. Deandreis D, Ghuzlan AA, Auperin A, et al. Is 18F-fluorodeoxyglucose-PET/CT useful for the presurgical characterisation of thyroid nodules with indeterminate fine needle aspiration cytology? Thyroid. 2012;22:165–72.

    Article  CAS  PubMed  Google Scholar 

  41. Zandieh S, Pokieser W, Knoll P, Sonneck-Koenne C, Kudlacek M, Mirzaei S. Oncocytic adenomas of thyroid-mimicking benign or metastatic disease on 18F-FDG-PET scan. Acta Radiol. 2015;56:709–13.

    Article  Google Scholar 

  42. Feine U, Lietzenmayer R, Hanke JP, et al. 18FDG whole-body PET in differentiated thyroid carcinoma. Flipflop in uptake patterns of 18FDG and I131. Nuklearmedizin. 1995;34:127–34.

    Article  CAS  Google Scholar 

  43. Kelders A, Kennes LN, Krohn T, Behrendt FF, Mottaghy FM, Verburg FA. Relationship between positive thyroglobulin doubling time and 18F-FDG PET/CT positive, 131I-negative lesions. Nucl Med Commun. 2014;35:176–81.

    Article  Google Scholar 

  44. Pattison DA, Solomon B, Hicks RJ. A new theranostic paradigm for advanced thyroid carcinoma. J Nucl Med. 2016;57:1493–4.

    Article  CAS  Google Scholar 

  45. Dong MJ, Liu ZF, Zhao K, et al. Value of 18FDG-PET/PET-CT in differentiated thyroid carcinoma with radioiodine-negative whole-body scan: a meta-analysis. Nucl Med Commun. 2009;30:639–50.

    Article  Google Scholar 

  46. McGriff NJ, Csako G, Gourgiotis L, et al. Effects of thyroid hormone suppression therapy on adverse clinical outcomes in thyroid cancer. Ann Med. 2002;34:554–64.

    Article  CAS  Google Scholar 

  47. Jonklaas J, Sarlis NJ, Litofsky D, et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid. 2006;16:1229–42.

    Article  Google Scholar 

  48. Seidlin S, Oshry E, Yallow AA. Spontaneous and experimentally induced uptake of radioactive iodine in metastases from thyroid carcinoma. J Clin Endocrinol Metab. 1948;8:423–5.

    Article  CAS  Google Scholar 

  49. Schlumberger M, Catargi B, Borget I, Deandreis D, Zerdoud S, Bridgi B, et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med. 2012;366:1663–73.

    Article  CAS  Google Scholar 

  50. Freudenberg LS, Jentzen W, Petrich T, et al. Lesion dose in differentiated thyroid carcinoma metastases after rhTSH or thyroid hormone withdrawal: 124I PET/CT dosimetric comparisons. Eur J Nucl Med Mol Imaging. 2010;37:2267–76.

    Article  CAS  Google Scholar 

  51. Kist JW, de Keizer B, van der Vlies M, et al. 124I PET/CT to predict the outcome of blind 131I treatment in patients with biochemical recurrence of differentiated thyroid cancer: results of a multicenter diagnostic cohort study (THYROPET). J Nucl Med. 2016;57:701–7.

    Article  CAS  Google Scholar 

  52. Pattison DA, Hicks RJ. Letter: THYROPET Study: is biology or technology the issue? J Nucl Med. 2017;58:354.

    Article  Google Scholar 

  53. Maxon HR, Englaro EE, Thomas SR, et al. Radioiodine-131 therapy for well differentiated thyroid cancer: quantitative radiation dosimetric approach—outcome and validation in 85 patients. J Nucl Med. 1992;33:1132–6.

    Google Scholar 

  54. Jentzen W, Hoppenbrouwers J, van Leeuwen P, et al. Assessment of lesion response in the initial radioiodine treatment of differentiated thyroid cancer using 124I PET imaging. J Nucl Med. 2014;55:1759–65.

    Article  CAS  Google Scholar 

  55. Jentzen W, Verschure F, van Zon A, et al. 124I PET assessment of response of bone metastases to initial radioiodine treatment of differentiated thyroid cancer. J Nucl Med. 2016;57:1499–504.

    Article  CAS  Google Scholar 

  56. Deandreis D, Rubino C, Hernan T, et al. Comparison of empiric versus whole body/blood clearance dosimetry-based approach to radioactive iodine treatment in patients with metastases from differentiated thyroid cancer. J Nucl Med. 2017;58:717.

    Article  CAS  Google Scholar 

  57. Tuttle RM, Leboeuf R, Robbins RJ, et al. Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. J Nucl Med. 2006;47:1587–91.

    Google Scholar 

  58. Benua RS, Cicale NR, Sonenberg M, Rawson RW. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med. 1962;87:171–82.

    CAS  Google Scholar 

  59. Rubino C, de Vathaire F, Dottorini ME, et al. Second primary malignancies in thyroid cancer patients. Br J Cancer. 2003;89:1638–44.

    Article  CAS  PubMed  Google Scholar 

  60. Chiu AC, Delpassand ES, Sherman SI. Prognosis and treatment of brain metastases in thyroid carcinoma. J Clin Endocrinol Metab. 1997;82:3637–42.

    Article  CAS  Google Scholar 

  61. O’Doherty MJ, Coakley AJ. Drug therapy alternatives in the treatment of thyroid cancer. Drugs. 1998;55:801–12.

    Article  Google Scholar 

  62. McWilliams RR, Giannini C, Hay ID, et al. Management of brain metastases from thyroid carcinoma: a study of 16 pathologically confirmed cases over 25 years. Cancer. 2003;98:356–62.

    Article  Google Scholar 

  63. Sciubba DM, et al. Diagnosis and management of metastatic spine disease. A review. J Neurosurg Spine. 2010;13:94–108.

    Article  Google Scholar 

  64. Harrington KD. Metastatic disease of the spine. J Bone Joint Surg Am. 1986;68A:1110–5.

    Article  Google Scholar 

  65. Quan GM, Pointillart V, Palussière J, Bonichon F. Multidisciplinary treatment and survival of patients with vertebral metastases from thyroid carcinoma. Thyroid. 2012;22:125–30.

    Article  Google Scholar 

  66. Ramadan S, Ugas MA, Berwick RJ, et al. Spinal metastasis in thyroid cancer. Head Neck Oncol. 2012;4:39.

    Article  CAS  PubMed  Google Scholar 

  67. Argiris A, Agarwala SS, Karamouzis MV, Burmeister LA, Carty SE. A phase II trial of doxorubicin and interferon alpha 2b in advanced, non-medullary thyroid cancer. Investig New Drugs. 2008;26:183–8.

    Article  CAS  Google Scholar 

  68. Shimaoka K, Schoenfeld DA, DeWys WD, Creech RH, DeConti R. A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer. 1985;56:2155–60.

    Article  CAS  PubMed  Google Scholar 

  69. Klein M, Vignaud JM, Hennequin V, Toussaint B, Bresler L, Plenat F, et al. Increased expression of the vascular endothelial growth factor is a pejorative prognosis marker in papillary thyroid carcinoma. J Clin Endocrinol Metab. 2001;86:656–8.

    Article  CAS  Google Scholar 

  70. Yu XM, Lo CY, Chan WF, Lam KY, Leung P, Luk JM. Increased expression of vascular endothelial growth factor C in papillary thyroid carcinoma correlates with cervical lymph node metastases. Clin Cancer Res. 2005;11:8063–9.

    Article  CAS  PubMed  Google Scholar 

  71. Brose MS, Nutting CM, Jarzab B, Elisei R, Siena S, Bastholt L, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014;384:319–28.

    Article  CAS  PubMed  Google Scholar 

  72. Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372:621–30.

    Article  PubMed  Google Scholar 

  73. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099–109.

    Article  CAS  PubMed  Google Scholar 

  74. Carlomagno F, Anaganti S, Guida T, Salvatore G, Troncone G, Wilhelm SM, et al. BAY 43-9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst. 2006;98:326–34.

    Article  CAS  PubMed  Google Scholar 

  75. Gupta-Abramson V, Troxel AB, Nellore A, Puttaswamy K, Redlinger M, Ransone K, et al. Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol. 2008;26:4714–9.

    Article  CAS  PubMed  Google Scholar 

  76. Kloos RT, Ringel MD, Knopp MV, Hall NC, King M, Stevens R, et al. Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol. 2009;27:1675–84.

    Article  CAS  PubMed  Google Scholar 

  77. Paschke R, Schlumberger M, Nutting C, Jarzab B, Elisei R, Siena S, et al. Exploratory analysis of outcomes for patients with locally advanced or metastatic radioactive iodine-refractory differentiated thyroid cancer (RAI-R DTC) receiving open-label sorafenib post-progression on the phase III DECISION trial. Exp Clin Endocrinol Diabetes 2015;123–P03_05.

    Google Scholar 

  78. Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res. 2008;14:5459–65.

    Article  CAS  PubMed  Google Scholar 

  79. Matsui J, Yamamoto Y, Funahashi Y, Tsuruoka A, Watanabe T, Wakabayashi T, et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer. 2008;122:664–71.

    Article  CAS  Google Scholar 

  80. Cabanillas ME, Schlumberger M, Jarzab B, Martins RG, Pacini F, Robinson B, et al. A phase 2 trial of lenvatinib (E7080) in advanced, progressive, radioiodine-refractory, differentiated thyroid cancer: a clinical outcomes and biomarker assessment. Cancer. 2015;121:2749–56.

    Article  CAS  PubMed  Google Scholar 

  81. Locati LD, Licitra L, Agate L, Ou SH, Boucher A, Jarzab B, et al. Treatment of advanced thyroid cancer with axitinib: phase 2 study with pharmacokinetic/pharmacodynamic and quality-of-life assessments. Cancer. 2014;120:2694–703.

    Article  CAS  Google Scholar 

  82. Sherman SI, Wirth LJ, Droz JP, Hofmann M, Bastholt L, Martins RG, et al. Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med. 2008;359:31–42.

    Article  CAS  Google Scholar 

  83. Leboulleux S, Bastholt L, Krause T, de la Fouchardiere C, Tennvall J, Awada A, et al. Vandetanib in locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 2 trial. Lancet Oncol. 2012;13:897–905.

    Article  CAS  Google Scholar 

  84. Bible KC, Suman VJ, Molina JR, Smallridge RC, Maples WJ, Menefee ME, et al. Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: results of a phase 2 consortium study. Lancet Oncol. 2010;11:962–72.

    Article  CAS  PubMed  Google Scholar 

  85. Kim KB, Cabanillas ME, Lazar AJ, Williams MD, Sanders DL, Ilagan JL, et al. Clinical responses to vemurafenib in patients with metastatic papillary thyroid cancer harboring BRAF(V600E) mutation. Thyroid. 2013;23:1277–83.

    Article  CAS  PubMed  Google Scholar 

  86. Brose MS, Cabanillas ME, Cohen EE, Wirth LJ, Riehl T, Yue H, et al. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17:1272–82.

    Article  CAS  PubMed  Google Scholar 

  87. Godbert Y, Henriques de Figueiredo B, Bonichon F, Chibon F, Hostein I, Perot G, et al. Remarkable response to crizotinib in woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma. J Clin Oncol. 2015;33:e84–7.

    Article  Google Scholar 

  88. Mehnert J, Varga A, Brose MS, Aggarwal R, Lin C, Prawira A. Pembrolizumab for advanced papillary or follicular thyroid cancer: preliminary results from the phase 1b KEYNOTE-028 study. J Clin Oncol. 2016;34(Suppl) Abstract 6091.

    Article  Google Scholar 

  89. Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368:623–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David A. Pattison or Jeanne Tie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pattison, D.A., Miller, J.A., Khavar, B., Tie, J. (2018). Management of Distant Metastasis in Differentiated Thyroid Cancer. In: Parameswaran, R., Agarwal, A. (eds) Evidence-Based Endocrine Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-10-1124-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1124-5_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1123-8

  • Online ISBN: 978-981-10-1124-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics