Skip to main content

Paleoproterozoic Gneissic Granites in the Liaoji Mobile Belt, North China Craton: Implications for Tectonic Setting

  • Chapter
  • First Online:
Main Tectonic Events and Metallogeny of the North China Craton

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

Voluminous Paleoproterozoic gneissic granites occur in the Liaoji belt in the North China Craton (NCC), which were intruded by mafic dykes, and experienced a late-stage amphibolite facies metamorphism. These granites were thought by some researchers to be A-type granites and formed in a continental rifting setting. We propose a different model for the origin of these granites and the tectonic setting, based on the integrated field, petrographic, geochronological, and geochemical studies on a couple of gneissic granite plutons. The gneissic granites were emplaced at 2173–2203 Ma, and the mafic dykes at ca. 2159 Ma, followed by an amphibolite facies metamorphism at ca. 1.9 Ga. The gneissic granites contain mafic microgranular enclaves (MMEs), calcium hornblendes, magnesiohorblendes, accessory titanite, and pyrrhotite. They show calc-alkaline arc magma affinity, with A/CNK = 0.9 − 1.2 (mostly less than 1.1), A/NK = 0.9 − 1.4, SiO2 = 68.3 − 76.9 wt%, low contents of TiO2 (<0.3 wt%), enrichment of LILEs, such as K, Rb, Sr, Cs, depletion of some HFSEs, such as Nb, Ti. These characteristics suggest that these gneissic granites are I-type granites formed probably in a subduction zone. The A-type-like characteristics for some granites (the Dafangshen granite) are attributable to the highly evolved nature of the pluton as shown by the high SiO2 contents (76.7–77.1 wt%), which could have been caused by the high boron contents of the pluton, because addition of boron in magma system tends to prolong magma evolution and lead to significant differentiation. The large variation of whole-rock ε Nd(t) values (−8.6 to 1.5) and zircon ε Hf(t) values (−1.3 to 5.6), together with the existence and petrographic features of the MMEs, and oscillatory zoning in plagioclase, suggest that mixing/mingling of lower crust-derived felsic magma with enriched mantle-derived mafic magma might have resulted in formation of these gneissic granites. The existence of Archean inherited zircons in these granites together with the arc affinity suggests a northward subduction for the JLJB in the Paleoproterozoic times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, A. T. (1976). Magma mixing: Petrologicalprocess and volcanological tool. Journal of Volcanologyand Geothermal Research, 1, 3–33.

    Article  Google Scholar 

  • Bai, J. (1993). The Precambrian geology and Pb–Zn mineralization in the northern margin of North China Platform. Beijing: Geological Publishing House (in Chinese with English abstract).

    Google Scholar 

  • Bai, J., & Dai, F.-Y. (1998). Archean crust of China. In X. Y. Ma, J. Bai (Eds.), Precambrian crustal evolution of China (pp. 15–86). Beijing: Springer Geological Publishing House (in Chinese with English abstract).

    Google Scholar 

  • Bau, M. (1996). Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contribution to Mineralogy and Petrology, 123, 323–333.

    Article  Google Scholar 

  • Bonin, B. (1990). From orogenic to anorogenic settings: Evolution of granitoid suites after a major orogenesis. Geological Journal, 25, 261–270.

    Article  Google Scholar 

  • Bonin, B. (2004). Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crust, sources? A review. Lithos, 78, 1–24.

    Article  Google Scholar 

  • Cai, J.-H., Yan, G.-H., Mu, B.-L., Xu, B.-L., Shao, H.-X., & Xu, R.-H. (2002). U-Pb and Sm-Nd isotopic ages of an alkaline syenite complex body in Liangtun-Kuangdongguo, Gai County, Liaoning Province, China and their geological significance. Acta Petrologica Sinica, 18, 349–354 (in Chinese with English abstract).

    Google Scholar 

  • Chappell, B. W., White, A. J. R., Williams, I. S., Wyborn, D., & Wyborn, L. A. I. (2000). Lachlan Fold Belt granites revisited: High- and low-temperature granites andtheir implications. Australian Journal of Earth Sciences, 47, 123–138.

    Article  Google Scholar 

  • Chen, B., Chen, Z.-C., & Jahn, B.-M. (2009). Origin of mafic enclaves from the Taihang Mesozoic orogen, North China Craton. Lithos, 110, 343–358.

    Google Scholar 

  • Chen, B., Jahn, B.-M., & Suzuki, K. (2013). Petrological and Nd-Sr-Os isotopic constraints on the origin of high-Mg adakitic rocks from the North China Craton: Tectonic implications. Geology, 41, 91–94.

    Article  Google Scholar 

  • Chen, B., Ma, X.-H., & Wang, Z.-Q. (2014). Origin of the fluorine-rich highly differentiated granites from the Qianlishan composite plutons (South China) and implications for polymetallic mineralization. Journal of Asian Earth Sciences, 93, 301–314.

    Article  Google Scholar 

  • Chen, B., Tian, W., Jahn, B. M., & Chen, Z.-C. (2008). Zircon SHRIMP U-Pb ages and in-situ Hf isotopic analysis for the Mesozoic intrusions in South Taihang, North China Craton: Evidence for hybridization between mantle-derived magmas and crustal components. Lithos, 102, 118–137.

    Article  Google Scholar 

  • Chen, R.-D., Li, X.-D., & Zhang, F.-S. (2003). Several problems about the Paleoproterozoic geology of eastern Liaoning. Geology of China, 30, 207–213 (in Chinese with English abstract).

    Google Scholar 

  • Clynne, M. A. (1999). A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California. Journal of Petrology, 40, 105–132.

    Article  Google Scholar 

  • Faure, M., Lin, W., Monie, P., & Bruguier, O. (2004). Palaeoproterozoic arc magmatism and collision in Liaodong Peninsula (north-east China). Terra Nova, 16, 75–80.

    Google Scholar 

  • Feeley, T. C., Wilson, L. F., & Underwood, S. J. (2008). Distribution and compositions of magmatic inclusions in the Mount Helen dome, Lassen Volcanic Center, California: Insights into magma chamber processes. Lithos, 106, 173–189.

    Article  Google Scholar 

  • Gao, S., Rudnick, R. L., Yuan, H.-L., Liu, X.-M., Liu, Y.-S., Xu, W.-L., et al. (2004). Recycling lower continental crust in the North China Craton. Nature, 432, 892–897.

    Google Scholar 

  • Geng, Y.-S., Wan, Y.-S., & Shen, Q.-H. (2002). Precambrian basic volcanism and crustal growth in the North China Craton. Acta Geologica Sinica, 76(2), 199–208.

    Google Scholar 

  • Griffin, W. L., Wang, X., Jackson, S. E., Pearson, N. J., O’Reilly, S. Y., Xu, X., et al. (2002). Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes. Tonglu and Pingtan igneous complexes. Lithos, 61, 237–269.

    Google Scholar 

  • Guo, J.-H., Sun, M., Chen, F.-K., & Zhai, M.-G. (2005). Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China craton: Timing of Paleoproterozoic continental collision. Journal of Asian Earth Sciences, 24, 629–642.

    Google Scholar 

  • Hao, D.-F., Li, S.-Z., Zhao, G.-C., Sun, M., Han, Z.-Z., & Zhao, G.-T. (2004). Origin and its constraint to tectonic evolution of Paleoproterozoic granitoids in the eastern Liaoning and Jilin province, North China. Acta Petrologica Sinica, 20, 1409–1416 (in Chinese with English abstract).

    Google Scholar 

  • He, G.-P., & Ye, H.-W. (1998a). Compositions and main characteristics of Early Proterozoic metamorphic terrains in the eastern Liaoning and the southern Jilin areas. Journal of Changchun University Science and Technology, 28, 121–126 (in Chinese with English abstract).

    Google Scholar 

  • He, G.-P., & Ye, H.-W. (1998b). Two types of Early Proterozoic metamorphism in the Eastern Liaoning and Southern Jilin provinces and their tectonic implications. Acta Petrologica Sinica, 14, 152–162 (in Chinese with English abstract).

    Google Scholar 

  • Holden, P., Halliday, A. N., & Stephens, W. E. (1987). Neodymium and strontium isotope content of microdiorite enclaves points to mantle input to granitoid production. Nature, 330, 53–56.

    Article  Google Scholar 

  • Huang, D.-Z., Gao, J., & Dai, T.-G. (2001). Geochemical tracing of the fluid in subduction zones. Earth Science Frontiers, 8(3), 131–139 (in Chinese with English abstract).

    Google Scholar 

  • Irber, W. (1999). The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Acta, 63, 489–508.

    Google Scholar 

  • Jahn, B.-M., & Ernst, W. G. (1990). Late Archean Sm-Nd Isochron Age for mafic-ultramafic supracrustal amphibolites from the Northeastern Sino-Korean Craton, China. Precambrian Research, 46, 295–306.

    Article  Google Scholar 

  • Jahn, B.-M., Wu, F.-Y., Capdevila, R., Martineau, F., Zhao, Z.-H., & Wang, Y.-X. (2001). Highly evolved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xing’an Mountains in NE China. Lithos, 59, 171–198.

    Article  Google Scholar 

  • Janoušek, V., Braithwaite, C. J. R., Bowes, D. R., & Gerdes, A. (2004). Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: An integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos, 78, 67–99.

    Article  Google Scholar 

  • Jiang, N., Guo, J.-H., & Chang, G.-H. (2013). Nature and evolution of the lower crust in the eastern North China Craton: A review. Earth-Science Reviews, 122, 1–9.

    Article  Google Scholar 

  • Kemp, A. I. S. (2004). Petrology of high-Mg, low-Ti igneous rocks of the Glenelg River Complex (SE Australia) and the nature of their interaction with crustal melts. Lithos, 78, 119–156.

    Article  Google Scholar 

  • Kemp, A. I. S., & Hawkesworth, C. J. (2006). Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226, 144–162.

    Article  Google Scholar 

  • Kröner, A., Compston, W., Zhang, G.-W., Guo, A.-L., & Todt, W. (1988). Age and tectonic setting of Late Archean greenstone–gneiss terrain in Henan Province, China, as revealed by single-grain zircon dating. Geology, 16, 211–215.

    Article  Google Scholar 

  • Leake, B. E., Woolley, A. R., Aprs, C. E. S., et al. (1997). Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. The Canadian Mineralogist, 35, 219–246.

    Google Scholar 

  • Li, S.-Z., & Zhao, G.-C. (2007). SHRIMP U-Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton. Precambrian Research, 158, 1–16.

    Article  Google Scholar 

  • Li, S.-Z., Zhao, G.-C., Santosh, M., Liu, X., & Dai, L.-M. (2011). Palaeoproterozoic tectonothermal evolution and deep crustal processes in the Jiao-Liao-Ji Belt, North China Craton: A review. Geological Journal, 46, 525–543.

    Google Scholar 

  • Li, S.-Z., Zhao, G.-C., Sun, M., Han, Z.-Z., Hao, D.-F., Luo, Y., et al. (2005). Deformation history of the Paleoproterozoic Liaohe Group in the Eastern Block of the North China Craton. Journal of Asian Earth Sciences, 24(5), 659–674.

    Google Scholar 

  • Li, S.-Z., Zhao, G.-C., Sun, M., Hao, D.-F., Luo, Y., & Yang, Z.-Z. (2003). Paleoproterozoic tectonothermal evolution and deep crustal processes of the Jiao–Liao Block. Acta Geologica Sinica, 73, 328–340 (in Chinese with English abstract).

    Google Scholar 

  • Li, Z., & Chen, B. (2014). Geochronology and geochemistry of the Paleoproterozoic meta-basalts from the Jiao-Liao-Ji Belt, North China Craton: Implications for petrogenesis and tectonic setting. Precambrian Research, 255, 653–667.

    Article  Google Scholar 

  • Liu, D.-Y., Nutman, A. P., Compston, W., Wu, J.-S., & Shen, Q.-H. (1992). Remmants of ≥3800 Ma crust in the Chinese part of the Sino- Korean Craton. Geology, 20, 339–342.

    Article  Google Scholar 

  • Lu, X.-P., Wu, F.-Y., Guo, J.-H., Wilde, S. A., Yang, J.-H., Liu, X.-M., et al. (2006). Zircon U-Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern block in the North China Craton. Precambrian Research, 146, 138–164.

    Google Scholar 

  • Lu, X.-P., Wu, F.-Y., Guo, J.-H., & Yin, C.-J. (2005). Late Paleoproterozoic granitic magmatism and crustal evolution in the Tonghua region, northeast China. Acta Petrologica Sinica, 21(3), 721–736 (in Chinese with English abstract).

    Google Scholar 

  • Lu, X.-P., Wu, F.-Y., Lin, J.-Q., Sun, D.-Y., Zhang, Y.-B., & Guo, L.-C. (2004). Geochronological framework of early Precambrian granitic magmatism in the eastern Liaoning Peninsular: Constraints on the early Precambrian evolution of the Eastern Block of the North China Craton. Chinese Journal of Geology, 39, 123–138.

    Google Scholar 

  • Lu, L.-Z., Xu, X.-C., & Liu, F.-L. (1996). Early Precambrian Khondalite Series in North China. Changchun: Changchun Publishing House.

    Google Scholar 

  • Lukkari, S., & Holtz, F. (2007). Phase relations of a F-enriched peraluminous granite: An experimental study of the Kymi topaz granite stock, southern Finland. Contribution to Mineralogy and Petrology, 153, 273–288.

    Article  Google Scholar 

  • Luo, Y., Sun, M., Zhao, G.-C., Ayers, J. C., Li, S.-Z., Xia, X.-P., et al. (2008). A comparison of U-Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Group: Constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 163, 279–306.

    Google Scholar 

  • Luo, Y., Sun, M., Zhao, G.-C., Li, S.-Z., Xu, P., Ye, K., et al. (2004). LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: Constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Research, 134, 349–371.

    Google Scholar 

  • Ma, X.-H., Chen, B., & Yang, M.-C. (2013). Magma mixing origin for the Aolunhua porphyry related to Mo-Cu mineralization, eastern Central Asian Orogenic Belt. Gondwana Research, 24, 1152–1171.

    Article  Google Scholar 

  • Manning, D. A. C. (1981). The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Contributions to Mineralogy and Petrology, 76, 206–215.

    Article  Google Scholar 

  • Meng, E., Liu, F.-L., Cui, Y., & Cai, J. (2013). Zircon U-Pb and Lu-Hf isotopic and whole-rock geochemical constraints on the protolith and tectonic history of the Changhai metamorphic supracrustal sequence in the Jiao-Liao-Ji Belt, southeast Liaoning Province, Northeast China. Precambrian Research, 233, 297–315.

    Article  Google Scholar 

  • Noyes, H., Frey, F. A., & Wones, D. R. (1983). A tale of two plutons: Geochemical evidence bearing on the origin and differentiation of the Red Lake and Eagle Peak plutons, central Sierra Nevada, California. Journal of Geology, 91, 487–509.

    Article  Google Scholar 

  • Peccerillo, A., & Taylor, A. R. (1976). Geochemistry of Eocene calc-alkaline volcanicrocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63–81.

    Article  Google Scholar 

  • Peng, Q.-M., & Palmer, M. R. (1995). The Palaeoproterozoic boron deposits in eastern Liaoning, China—A metamorphosed evaporite. Precambrian Research, 72, 185–197.

    Article  Google Scholar 

  • Peuct, J. J., Jahn, B.-M., & Cornichet, J. (1986). Zircon U-Pb age of a tonalite within the Qingyuan granite greenstone belt in Northeast China. In Chinese Academy of Geological Sciences (Ed.), Contributions to international symposium of precambrian crustal evolution (Vol. 3, pp. 222–229). Beijing: Geological Publishing House.

    Google Scholar 

  • Sklyarov, E. V., & Fedorovsky, V. S. (2006). Magma mingling: Tectonic and geodynamic aspects. Geotektonika, 2, 47–64.

    Google Scholar 

  • Soderlund, U., Patchett, P. J., Vervoort, J. D. & Isachsen, C. E. (2004). The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4), 311–324.

    Google Scholar 

  • Sun, M., Armstrong, R. L., Lambert, R. S. J., Jiang, C.-C., & Wu, J.-H. (1993). Petrochemistry and Sr, Pb and Nd isotopic geochemistry of the Paleoproterozoic Kuandian Complex, the eastern Liaoning province, China. Precambrian Research, 62, 171–190.

    Article  Google Scholar 

  • Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanicbasalts: Implications for mantle composition and processes. In: A. D. Sauders & M. J. Norry (Eds.), Magmatism in the Ocean Basins (Vol. 42, pp. 313–345). Geological Special Publications.

    Google Scholar 

  • Tam, P. Y., Zhao, G.-C., Liu, F.-L., Zhou, X.-W., Sun, M., & Li, S.-Z. (2011). SHRIMP U-Pb zircon ages of high-pressure mafic and pelitic granulites and associated rocks in the Jiaobei massif: Constraints on the metamorphic ages of the Paleoproterozoic Jiao-Liao-Ji Belt in the North China Craton. Gondwana Research, 19, 150–162.

    Google Scholar 

  • Tam, P. Y., Zhao, G.-C., Sun, M., Li, S.-Z., Wu, M.-L., & Yin, C.-Q. (2012b). Petrology and meta-morphic P–T path of high-pressure mafic granulites from the Jiaobei massif inthe Jiao–Liao–Ji Belt, North China Craton. Lithos, 155, 94–109.

    Google Scholar 

  • Tam, P. Y., Zhao, G.-C., Zhou, X.-W., Sun, M., Guo, J.-H., Li, S.-Z., et al. (2012a). Metamorphic P-T path and implications of high-pressure politic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Gondwana Research, 22, 104–117.

    Google Scholar 

  • Vernon, R. H., Etheridge, M. E., & Wall, V. J. (1988). Shape and microstructure of microgranitoidenclaves: Indicators of magma mingling and flow. Lithos, 22, 1–11.

    Article  Google Scholar 

  • Wan, Y.-S., Song, B., Liu, D.-Y., Wilde, S.A., Wu, J. –S., Shi, Y.-R., et al. (2006). SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research, 149, 249–271.

    Google Scholar 

  • Wang, H.-C., Lu, S.-N., Chu, H., Xiang, Z.-Q., Zhang, C.-J., & Liu, H. (2011). Zircon U-Pb age and tectonic setting of meta-basalts of Liaohe Group in Helan area Liaoyang, Liaoning Province. Journal of Jilin University (Earth Science Edition), 41, 1321–1334.

    Google Scholar 

  • Wang, R.-M., Chen, Z.-Z., & Lai, X.-Y. (1997). Conversion from mantle plum regime to plate tectonic regime in North China. Earth Sciences, 22(3), 28–50.

    Google Scholar 

  • Wang, W., Liu, S.-W., Wilde, S.A., Li, Q.-G., Zhang, J., Bai, X., et al. (2012). Petrogenesis and geochronology of Precambrian granitoid gneisses in Western Liaoning Province: Constraints on Neoarchean to early Paleoproterozoic crustal evolution of the North China Craton. Precambrian Research, 222–223, 290–311.

    Google Scholar 

  • Watson, E. B., & Harrison, T. M. (1983). Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2), 295–304.

    Google Scholar 

  • Whalen, J. B., Currie, K. L., & Chappell, B. W. (1987). A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95, 407–419.

    Article  Google Scholar 

  • White, A. J. R., Chappell, B. W., Wyborn, D. (1999). Application of the restite model to the Deddick granodiorite and its enclaves—A reinterpretation of the observations and data of Maas et al. (1997). Journal of Petrology, 40, 413–421.

    Google Scholar 

  • Wu, F.-Y., Han, R.-H., Yang, J.-H., Wilde, S. A., Zhai, M.-G., & Par, S. C. (2007a). Initial constraints on the timing of granitic magmatism in North Korea using U-Pb zircon geochronology. Chemical Geology, 238, 232–248.

    Google Scholar 

  • Wu, F.-Y., Yang, J.-H., Wilde, S. A., Liu, X.-M., Guo, J.-H., & Zhai, M.-G. (2007b). Detrital zircon U–Pb and Hf isotopic constraints on the crustal evolution of North Korea. Precambrian Research, 159, 155–177.

    Google Scholar 

  • Wu, Y.-B., & Zheng, Y.-F. (2004). Genetic mineralogy study on zircon and its restrict to explanation of U-Pb ages. Chinese Science Bulletin, 49(16), 1589–1604 (in Chinese).

    Google Scholar 

  • Yang, J.-H., Wu, F.-Y., Wild, S. A., & Zhao, G.-C. (2008). Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: Geochronological, geochemical and Nd-Hf isotopic evidence. Precambrian Research, 167, 125–149.

    Google Scholar 

  • Yin, A., & Nie, S. (1996). Phanerozoic palinspastic reconstruction of China and its neigh-boring regions. In A. Yin & T. M. Harrison (Eds.), The tectonic evolution of Asia (pp. 285–442). New York: Cambridge University Press.

    Google Scholar 

  • Zhang, H.-F., Zhai, M.-G., Santosh, M., Diwu, C. R., & Li, S.-R. (2011). Geochronology and petrogenesis of Neoarchean potassic meta-granites from Huai’an Complex: Implications for the evolution of the North China Craton. Gondwana Research, 20, 82–105.

    Google Scholar 

  • Zhang, Q.-S. (1984). Geology and metallogeny of the early Precambrian in China. Jiling: Jilin People’s Press.

    Google Scholar 

  • Zhang, Q.-S., & Yang, Z.-S. (1988). Early crust and mineral deposits of Liaodong Peninsula, China. Beijing: Geological Publishing House (in Chinese with English abstract).

    Google Scholar 

  • Zhao, G.-C., Sun, M., Wilde, S. A., & Li, S.-Z. (2005). Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2), 177–202.

    Article  Google Scholar 

  • Zhao, G.-C., Wilde, S. A., Cawood, P. A., & Sun, M. (2001). Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P–T constraints and tectonic evolution. Precambrain Research, 107, 45–73.

    Article  Google Scholar 

  • Zhao, G.-C., Wilde, S. A., Cawood, P. A., & Sun, M. (2002). SHRIMP U-Pb zircon ages of the Fuping Complex: Implications for accretion and assembly of the North ChinaCraton. American Journal of Science, 302, 191–226.

    Article  Google Scholar 

  • Zhou, X.-W., Zhao, G.-C., Wei, C.-J., Geng, Y.-S., & Sun, M. (2008). Metamorphic evolution and Th-U-Pb zircon and monazite geochronology of high-pressure pelitic granulites in the Jiaobei massif of the North China Craton. American Journal of Science, 308, 328–350.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Yang, M., Chen, B., Yan, C. (2016). Paleoproterozoic Gneissic Granites in the Liaoji Mobile Belt, North China Craton: Implications for Tectonic Setting. In: Zhai, M., Zhao, Y., Zhao, T. (eds) Main Tectonic Events and Metallogeny of the North China Craton. Springer Geology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1064-4_7

Download citation

Publish with us

Policies and ethics