Skip to main content

Effect of Plasticizer on Fracture Toughness of Polylactic Acid Reinforced with Kenaf Fibre and Montmorillonite Hybrid Biocomposites

  • Chapter
  • First Online:
Nanoclay Reinforced Polymer Composites

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Monocomposites and hybrid biocomposites based-polylactic acid (PLA) are developed for specific application. In this study, monocomposites are referred to PLA reinforced with kenaf fibre (KF) and PLA filled with montmorillonite (MMT) organoclay. Hybrid biocomposite is denoted to PLA/KF/MMT. Both monocomposites and hybrid biocomposites are extruded using twin screw extruder and then injection moulded. The amount of kenaf fibre and MMT are fixed at 20 and 3 wt%, respectively. In the case of plasticized composites, amount of 3 wt% polyethylene glycol (PEG) was added. The effect of plasticizer on fracture toughness of monocomposites and hybrid biocomposites was studied. The result showed that the fracture toughness of plasticized PLA/KF/MMT yield 24.2 % higher than non-plasticized hybrid composite. Observation under scanning electron microscope (SEM) revealed that the fibre bridging, fibre pull-out and fibre breakage contributed to high fracture toughness of plasticized hybrid biocomposites. X-ray diffraction (XRD) also evident high percentage of crystallinity for plasticized hybrid biocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agubra, V.A., Owuor, P.S., Hosur, M.V.: Influence of nanoclay dispersion method on the mechanical behavior of e-glass/epoxy nanocomposites. Nanomater 3, 550–563 (2013)

    Article  Google Scholar 

  • Anuar, H., Noor Azlina, H., Suzana, A.B.K., et al.: Effect of PEG on impact strength of PLA hybrid biocomposite. In: Proceeding IEEE Symposium on Business, Engineering and Industrial Applications, pp. 473–476

    Google Scholar 

  • Ayandele, E., Sarkar, B., Alexandridis, P.: Polyhedral Oligomeric Silsequioxane (POSS)—containing polymer nanocomposites. Nanomater 2, 445–475 (2012)

    Article  Google Scholar 

  • Bikiaris, D.: Microstructures and properties of propylene/carbon nanotube nanocomposites. Mater 3, 2884–2946 (2010)

    Article  Google Scholar 

  • Bonnia, N.N., Ahmad, S.H., Zainol, I., et al.: Mechanical properties and environmental stress cracking resistance of rubber toughened polyester/kenaf composite. Express Polym. Lett. 4, 55–61 (2010)

    Article  Google Scholar 

  • Borba, P.M., Tedesco, A., Lenz, D.M.: Effect reinforcement nanoparticles addition on mechanical properties of SBS/curaua fibre composites. Mater. Res. 17(2), 412–419 (2014)

    Article  Google Scholar 

  • Chen, X., Irene, J., Beyerlein, L., et al.: Curved-fibre pull out model for nanocomposites. Part 2. Interfacial debonding and sliding. Mech. Mater. 41(3), 293–307 (2009)

    Google Scholar 

  • Dehbari, N., Moazeni, N., Wan Abdul Rahman, W.A.: Effects of kenaf core on properties of polylactic acid biocomposite. Polym. Compos. 35, 1220–1227 (2014)

    Google Scholar 

  • Domun, N., Hadavinia, H., Zhang, T., et al.: Improving the fracture toughness and the strength of epoxy using nanomaterials—a review of the current status. Nanoscale 7, 10294–10329 (2015)

    Article  Google Scholar 

  • Dong, Y., Ghautara, A., Takagi, H., et al.: Polylactic acid (PLA) biocomposites reinforced with coir fibre: evaluation of mechanical performance and multifunctional properties. Compos. Part A Appl. Sci. Manuf. 63, 76–84 (2014)

    Article  Google Scholar 

  • El Fattah, A.A., El Demerdash, A.G.M., Sadik, W.A.A., et al: The effect of sugarcane bagasse fibre on the properties of recycled high density polyethylene. J. Compos. Mater. 1–12

    Google Scholar 

  • Fernandes, E.M., Correlo, V.M., Mano, J.F., et al.: Novel cork-polymer composites reinforced with short natural coconut fibre: effect of fibre loading and coupling agent addition. Compos. Sci. Technol. 78, 56–62 (2013)

    Article  Google Scholar 

  • Ferrari, V.J., Arquez, A.P., De Hanai, J.B., et al.: Development of high performance fibre reinforced cement composites (HPFRCC) for application as a transition layer of reinforced beams. Ibracon Struct. Mater. J. 7, 965–975 (2014)

    Google Scholar 

  • Greco, F., Leonetti, L., Lonetti, P.: A two scale failure analysis of composite materials in presence of fibre/matrix crack initiation and propagation. Compos. Struct. 95, 582–597 (2013)

    Article  Google Scholar 

  • Hari, J., Pukanzsky, B.: Nanocomposites: preparation, structure, properties. In: Kutz, M. (ed.) Applied PlasticsEngine Handbook: Processing Materials, pp. 109–142. Elsevier Inc., Waltham (2011)

    Google Scholar 

  • Hsieh, T.H., Kinloch, A.J., Taylor, A.C., et al.: The Effect of Carbon Nanotubes on the fracture and fatigue performance of thermosetting epoxy polymer. J. Mater. Sci. 46, 7525–7535 (2011)

    Article  Google Scholar 

  • Huang, T., Miura, M., Nobukawa, S., et al: Chain Oacking and it anomalous effect on mechanical toughness of poly(lactic acid). Biomacromoleculs 1660–1666 (2015)

    Google Scholar 

  • Indira, K.N., Parameswaranpillai, J., Thomas, S.: Mechanical properties and failure topography of Banana Fibre PF macrocomposites fabricated by RTM and CM techniques. Polym. Sci. 1–8 (2013)

    Google Scholar 

  • Jiang, X.L., Luo, S.J., Chen, X.D.: Effect of nucleating agents on crystallization kinetic of PET. Express Polym. Lett. 1(4), 245–251 (2007)

    Article  Google Scholar 

  • Kaiser, R., Anuar, H., Samat, N., et al.: Effect of processing route on mechanical, thermal and morphological properties of PLA-based hybrid biocomposites. Iran. Polym. J. 22, 123–131 (2013)

    Article  Google Scholar 

  • Kumar, M.S., Raghavendra, K., Venkataswamy, M.A., et al.: Fractographic Analysis of tensile failures of aerospace grade composites. Mater. Res. 15(6), 990–997 (2012)

    Article  Google Scholar 

  • Lamon, J., R’Mili, M.: Investigation of the residual tensile behaviour of fibre bundles after static fatigue: implications for the prediction of durability of composites. Compos. Part A Appl. Sci. Manuf. 67, 149–156 (2014)

    Article  Google Scholar 

  • Lazim, Y.M., Salit, S.M., Zainudin, E.S., et al.: Effect of alkali treatment on the physical, mechanical and morphological properties of waste betel nut (Areca catechu) husk fibre. Biores 9(4), 7721–7736 (2014)

    Article  Google Scholar 

  • Li, X., Liu, W., Sun, L., Aifantis, K.A., et al.: Resin composites reinforced by nanoscaled fibres or tubes for dental regeneration. Biomed. Res. Int. 1–13 (2014)

    Google Scholar 

  • Liao, H., Wu, Y., Wu, M., et al.: Effects of fibre surface chemistry and roughness on interfacial structures of electrospun fibre reinforced epoxy composite films. Polym. Compos. 837–845 (2011)

    Google Scholar 

  • Liu, X., Grant, D.M., Parsons, A.J., et al.: Magnesium coated bioresorbable Phosphate Glass Fibres: Investigation of the interface between Fibre and Polyester Matrices. Biomed. Res. Int. 1–10 (2013)

    Google Scholar 

  • Majeed, K., Jawaid, M., Hassan, A., et al.: Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater. Des. 46, 391–410 (2013)

    Article  Google Scholar 

  • Ou, R., Guo, C., Xie, Y., et al.: Non isothermal crystallization kinetics of kevlar fibre-reinforced wood flour/HDPE composites. Biores 6(4), 4547–4565 (2011)

    Google Scholar 

  • Panagiotis, I., Xidas, K., Triantafyllidis, S.: Effect of the type of alkylammonium ion clay modifier on the structure and thermal/mechanical properties of glassy and rubbery epoxy–clay nanocomposites. Eur. Polym. J. 46(3), 404–417 (2010)

    Article  Google Scholar 

  • Piscitelli, F., Scamardella, A.M., Valentina, R., et al.: Epoxy composites based on amino-silylated MMT: the role of interfaces and clay morphology. J. Appl. Polym. Sci. 124(1), 616–628 (2012)

    Article  Google Scholar 

  • Poletto, M., Ornaghi Junior, H.L., Zattera, A.J.: Native cellulose; structure, characterization and thermal properties. Mater 7, 6105–6119 (2014)

    Article  Google Scholar 

  • Prasanth, R., Shankar, R., Anna, Dilfi., Thakur, V.K., et al.: Eco friendly fibre reinforced natural rubber green composites: a perspective on the future. In: Thakur, V.K. (ed.) Green Composites from Natural Resources, pp. 206–235. Taylor Francis (2010)

    Google Scholar 

  • Qiu, J., Song, P., Fu, S., et al.: Compatibilization of Polypropylene/ starch plasticized with diethanol amine. Adv. Mater. Res. 610–613, 475–479 (2013)

    Article  Google Scholar 

  • Ravikumar, M., Prasad, M.S.: Fracture toughness and mechanical properties of aluminum oxide filled chopped strand mat e-glass fibre reinforced-epoxy composites. Int. J. Sci. Res. Publ. 4(7), 1–7 (2014)

    Google Scholar 

  • Rios, C.J., Chomik, E., Balderrama, J.J., et al.: Determination of fracture toughness J on fibre- metal laminate type CARALL with sheets aluminium 6061. Proced. Mater. Sci. 9, 530–537 (2015)

    Article  Google Scholar 

  • Saba, N., Md Tahir, P., Jawaid, M.: A review on potentially of nano filler/natural filled polymer hybrid composites. Polym 6, 2247–2273 (2014)

    Article  Google Scholar 

  • Saba, N., Md Tahir, P., Jawaid, M.: Mechanical properties of kenaf fibre reinforced polymer composite: a review. Constr. Build. Mater. 76, 87–96 (2015)

    Article  Google Scholar 

  • Sarifuddin, S., Ismail, H., Zuraida, A.: The effect of kenaf Core Fibre Loading on Properties of low cost high density polypropylene/thermoplastic sago starch/kenaf core fiber composites. J. Phys. Sci. 24(2), 97–115 (2013)

    Google Scholar 

  • Salleh, Z., Taib, Y.M., Koay, M.H., et al.: Fracture toughness investigation on long kenaf/woven glass hybrid due to water absorption effect. Proc. Eng. 41, 1667–1673 (2012)

    Article  Google Scholar 

  • Shah, D.U., Schuber, P.J., Licence, P., et al.: Determining the minimum, critical and maximum fibre content for twisted yarn reinforced plant fibre composites. Compos. Sci. Technol. 72(15), 1909–1917 (2012)

    Article  Google Scholar 

  • Shi, X., Zhang, G., Phuong, T.V., et al.: Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid). Molecules 20, 1579–1593 (2015)

    Article  Google Scholar 

  • Shiraz, N.Z., Enferrad, E., Monfared, A., et al: Preparation of nanocomposite based on exfoliation of montmorillonite in acrylamide thermosensitive polymer. ISRN Polym. Sci. 1–5 (2013)

    Google Scholar 

  • Sumalla, M., Amber, L., Bawa, M.: Effect of Fibre Length on the Physical and Mechanical Properties of Random Oriented, Nonwoven Short Banana (musa balbisiana) Fibre/Epoxy Composite, vol. 2(1), pp. 139–149. www.Leena-luna.co.jp

  • Sylvester, O.N., Christopher, I.C., Celestine, O.N., et al.: Experimental investigations and statistical analysis of creep properties of hybridized epoxy-alumina-calcium silicate nanocomposite material operating at elevated temperatures. Int. J. Sci. Technol. Res. 6, 36–45 (2012)

    Google Scholar 

  • Tian, H.: Tagaya. H (2007) Preparation, characterization and mechanical properties of the polylactide/perlite and the polylactide/montmorillonite composites. J. Mater. Sci. 42, 3244–3250 (2007)

    Article  Google Scholar 

  • Todo, M., Takayama, T.: Fracture mechanisms of biodegradable PLA and PLA/PCL blends. In: Rosario, P. (ed.) Biomaterials-Physics and Chemistry. http://www.intechopen.com/books/biomaterials-physics-and-chemistry/fracture-mechanisms-of-biodegradable-pla-and-pla-pcl-blends

  • Weitsman, Y.J.: Effects of fluids on mechanical properties and performance chapter 7. In: Fluid effects in Polymer and Polymeric Composites, pp. 123–147

    Google Scholar 

  • Wong, K.J., Zahi, S., Low, K.O., et al.: Fracture characterization of short bamboo fibre reinforced polyester composites. Mater. Des. 31, 4147–4154 (2010)

    Article  Google Scholar 

  • Yousif, B.F., Shalwan, C.W., Chin, K.C.M.: Flexural properties of treated and untreated kenaf/epoxy composites. Mater. Des. 40, 378–385 (2012)

    Article  Google Scholar 

  • Zhao, P., Liu, W., Wu, Q., Ren, J.: Preparation, mechanical and thermal properties of biodegradable polyesters/poly(lactic acid) blends. J. Nanomater. 1–8 (2010)

    Google Scholar 

  • Zhu, J., Zhu, H., Njuguna, J., et al.: Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Mater 6, 5171–5198 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank International Islamic University Malaysia for the financial support and facilities provided in making these studies a success.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Anuar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Nur Aimi, M.N., Anuar, H. (2016). Effect of Plasticizer on Fracture Toughness of Polylactic Acid Reinforced with Kenaf Fibre and Montmorillonite Hybrid Biocomposites. In: Jawaid, M., Qaiss, A., Bouhfid, R. (eds) Nanoclay Reinforced Polymer Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-0950-1_11

Download citation

Publish with us

Policies and ethics