Skip to main content

Bronchodilators for COPD: At What Stage Should Therapeutic Intervention Be Initiated?

  • Chapter
  • First Online:
Chronic Obstructive Pulmonary Disease

Abstract

Pharmacologic therapy for COPD is used to reduce symptoms, reduce the frequency and severity of exacerbations, and improve health status and exercise tolerance. Medications that increase the FEV1 or change other spirometric variables, usually by altering airway smooth muscle tone, are termed bronchodilators, since the improvements in expiratory flow reflect widening of the airways rather than changes in lung elastic recoil. Such medications improve emptying of the lungs, tend to reduce dynamic hyperinflation at rest and during exercise, and improve exercise performance. The extent of these changes, especially in severe and very severe patients, is not easily predictable from the improvement in FEV1. This chapter will describe some of the information that support the use of mono- or combined bronchodilator therapy in patients with COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Global initiative for chronic Obstructive Lung Disease: Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Revised 2016.

    Google Scholar 

  2. Cazzola M, Page CP, Calzetta L, Matera MG. Pharmacology and therapeutics of bronchodilators. Pharmacol Rev. 2012;64:450–504.

    Article  CAS  PubMed  Google Scholar 

  3. Racke´ K, Juergens UR, Matthiesen S. Control by cholinergic mechanisms. Eur J Pharmacol. 2006;533:57–68.

    Article  PubMed  Google Scholar 

  4. Carstairs JR, Nimmo AJ, Barnes PJ. Autoradiographic visualization of beta-adrenoceptor subtypes in human lung. Am Rev Respir Dis. 1985;132:541–7.

    CAS  PubMed  Google Scholar 

  5. Johnson M. The β-adrenoceptor. Am J Respir Crit Care Med. 1998;158:S146–53.

    Article  CAS  PubMed  Google Scholar 

  6. Gu Q, Lee LY. Neural control of airway smooth muscle. In: Laurent GJ, Shapiro SD, editors. Encyclopedia of respiratory medicine. Amsterdam: Elsevier; 2006. p. 138–45.

    Chapter  Google Scholar 

  7. Prakash YS. Airway smooth muscle in airway reactivity and remodeling: what have we learned? Am J Physiol Lung Cell Mol Physiol. 2013;305:L912–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miraldi E, Masti A, Ferri S, Barni Comparini I. Distribution of hyoscyamine and scopolamine in Datura stramonium. Fitoterapia. 2001;72:644–8.

    Article  CAS  PubMed  Google Scholar 

  9. Gross NJ. Anticholinergic agents in asthma and COPD. Eur J Pharmacol. 2006;533:36–9.

    Article  CAS  PubMed  Google Scholar 

  10. Pierce RJ, Allen CJ, Campbell AH. A comparative study of atropine methonitrate, salbutamol and their combination in airways obstruction. Thorax. 1979;34:45–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scullion JE. The development of anticholinergics in the management of COPD. Int J Chron Obstruct Pulmon Dis. 2007;2:33–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hardy JPR, Goggin PL, Graham P. Bronchodilation effect of oxitropium bromide compared with ipratropium bromide (Abstract). Thorax. 1992;48:865.

    Google Scholar 

  13. Tashkin DP, Celli B, Senn S, Burkhart D, Kesten S, Menjoge S, Decramer M, UPLIFT Study Investigators. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med. 2008;359:1543–54.

    Article  CAS  PubMed  Google Scholar 

  14. Verkindre C, Fukuchi Y, Fle´male A, Takeda A, Overend T, Prasad N, Dolker M. Sustained 24-h efficacy of NVA237, a once-daily long-acting muscarinic antagonist, in COPD patients. Respir Med. 2010;104:1482–9.

    Article  CAS  PubMed  Google Scholar 

  15. Cazzola M. Aclidinium bromide, a novel long-acting muscarinic M3 antagonist for the treatment of COPD. Curr Opin Investig Drugs. 2009;10:482–90.

    CAS  PubMed  Google Scholar 

  16. Cahn A, Mehta R, Preece A, Blowers J, Donald A. Safety, tolerability and pharmacokinetics and pharmacodynamics of inhaled once-daily Umeclidinium in healthy adults deficient in CYP2D6 activity: a double-blind, randomized clinical trial. Clin Drug Investig. 2013;33:653–64.

    Article  CAS  PubMed  Google Scholar 

  17. Celli B, Decramer M, Leimer I, Vogel U, Kesten S, Tashkin DP. Cardiovascular safety of tiotropium in patients with COPD. Chest. 2010;137:20–30.

    Google Scholar 

  18. Singh S, Loke YK, Furberg CD. Inhaled anticholinergics and risk of major adverse cardiovascular events in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. JAMA. 2008;300:1439–50.

    Article  CAS  PubMed  Google Scholar 

  19. Bullowa JG, Kaplan DM. On the hypodermic use of adrenalin chloride in the treatment of asthmatic attacks. Med News. 1903;83:787–90.

    Google Scholar 

  20. Waldeck B. β-adrenoceptor agonists and asthma 100 years of development. Eur J Pharmacol. 2002;445:1–12.

    Article  CAS  PubMed  Google Scholar 

  21. Datta D, Vitale A, Lahiri B, ZuWallack R. An evaluation of nebulized levalbuterol in stable COPD. Chest. 2003;124:844–9.

    Article  CAS  PubMed  Google Scholar 

  22. Lötvall J. The long and short of β2-agonists. Pulm Pharmacol Ther. 2002;15:497–501.

    Article  PubMed  Google Scholar 

  23. Cazzola M, Matera MG, Santangelo G, Vinciguerra A, Rossi F, D’Amato G. Salmeterol and formoterol in partially reversible severe chronic obstructive pulmonary disease: a dose–response study. Respir Med. 1995;89:357–62.

    Article  CAS  PubMed  Google Scholar 

  24. Kew KM, Mavergames C, Walters JA. Long-acting beta2-agonists for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2013;10:CD010177.

    Google Scholar 

  25. Löfdahl CG, Svedmyr N. Formoterol fumarate, a new β2-adrenoceptor agonist. Allergy. 1989;44:264–71.

    Article  PubMed  Google Scholar 

  26. Johnson M, Butchers PR, Coleman RA, Nials AT, Strong P, Sumner MJ, Vardey CJ, Whelan CJ. The pharmacology of salmeterol. Life Sci. 1993;52:2131–43.

    Article  CAS  PubMed  Google Scholar 

  27. Cazzola M, Bardaro F, Stirpe E. The role of indacaterol for chronic obstructive pulmonary disease (COPD). J Thorac Dis. 2013;5:559–66.

    PubMed  PubMed Central  Google Scholar 

  28. O’Reilly, J. Chronic obstructive pulmonary disease:olodaterol. NICE: Evidence summary: new medicine Published; 2015.

    Google Scholar 

  29. Hanania NA, Feldman G, Zachgo W, Shim JJ, Crim C, Sanford L, Lettis S, Barnhart F, Haumann B. The efficacy and safety of the novel long-acting β2 agonist vilanterol in COPD patients: a randomized placebo-controlled trial. Chest. 2012;2012(142):119–27.

    Article  Google Scholar 

  30. Make BJ, Kanniess F, Bateman ED, Linberg SE. Efficacy of 3 different doses of carmoterol, a long-acting β2-agonist in patients with COPD (Abstract). Proc Am Thorac Soc. 2008;5:A961.

    Article  Google Scholar 

  31. Nowak R, Iwaki Y, Matsuda K, Johnson K, Dunton AW. Reduced hospital admission and improved pulmonary function following intravenous MN-221 (bedoradrine), a novel, highly selective beta2-adrenergic receptor agonist, adjunctive to standard of care in severe acute exacerbation of asthma (Abstract). Chest. 2010;138:66A.

    Article  Google Scholar 

  32. Pearle J, Iwaki Y, Dunton AW, Kitt E, Ruby K. Intravenous MN-221, a novel, highly selective beta2-adrenergic receptor agonist, improves lung function in stable moderate to severe chronic obstructive pulmonary disease patients (Abstract). Chest. 2010;138:487A.

    Article  Google Scholar 

  33. Tamura G, Ichinose M, Fukuchi Y, Miyamoto T. Transdermal tulobuterol patch, a long-acting β2-agonist. Allergol Int. 2012;61:219–29.

    Article  CAS  PubMed  Google Scholar 

  34. Lipworth BJ, McDevitt DG, Struthers AD. Hypokalemic and ECG sequelae of combined beta-agonist/diuretic therapy. Protection by conventional doses of spironolactone but not triamterene. Chest. 1990;98:811–15.

    Article  CAS  PubMed  Google Scholar 

  35. Uren NG, Davies SW, Jordan SL, Lipkin DP. Inhaled bronchodilators increase maximum oxygen consumption in chronic left ventricular failure. Eur Heart J. 1993;14:744–50.

    Article  CAS  PubMed  Google Scholar 

  36. Brochard L, Mancebo J, Wysocki M, Lofaso F, Conti G, Rauss A, Simonneau G, Benito S. Gasparetto A, and Lemaire F () Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med. 1995;333:817–22.

    Article  CAS  PubMed  Google Scholar 

  37. Ram FS, Jones PW, Castro AA, et al. Oral theophylline for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2002;4:CD003902.

    Google Scholar 

  38. Zhou Y, Wang X, Zeng X, et al. Positive benefits of theophylline in a randomized, double-blind, parallel-group, placebo-controlled study of low-dose, slow-release theophylline in the treatment of COPD for 1 year. Respirology. 2006;11:603–10.

    Article  PubMed  Google Scholar 

  39. Kobayashi M, Nasuhara Y, Betsuyaku T, Shibuya E, Tanino Y, Tanino M, Takamura K, Nagai K, Hosokawa T, Nishimura M. Effect of low-dose theophylline on airway inflammation in COPD. Respirology. 2004;9:249–54.

    Article  PubMed  Google Scholar 

  40. Fabbri LM, Calverley PM, Izquierdo-Alonso JL, et al. Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with longacting bronchodilators: two randomised clinical trials. Lancet. 2009;374:695–703.

    Article  CAS  PubMed  Google Scholar 

  41. Rabe KF. Update on roflumilast, a phosphodiesterase 4 inhibitor for the treatment of chronic obstructive pulmonary disease. Br J Pharmacol. 2011;163:53–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nardi A, Demnitz J, Garcia ML, Polosa R. Potassium channels as drug targets for therapeutic intervention in respiratory diseases. Expert Opin Ther Pat. 2008;18:1361–84.

    Article  CAS  Google Scholar 

  43. Wu D, Lee D, Sung YK. Prospect of vasoactive intestinal peptide therapy for COPD/PAH and asthma: a review. Respir Res. 2011;12:45.

    Google Scholar 

  44. Fernandes LB, Henry PJ, Goldie RG. Rho kinase as a therapeutic target in the treatment of asthma and chronic obstructive pulmonary disease. Ther Adv Respir Dis. 2007;1:25–33.

    Article  PubMed  Google Scholar 

  45. Hamad AM, Range S, Holland E, Knox AJ. Regulation of cGMP by soluble and particulate guanylyl cyclases in cultured human airway smooth muscle. Am J Physiol. 1997;273:L807–13.

    CAS  PubMed  Google Scholar 

  46. Högman M, Frostell CG, Hedenström H, Hedenstierna G. Inhalation of nitric oxide modulates adult human bronchial tone. Am Rev Respir Dis. 1993;148:1474–8.

    Google Scholar 

  47. Scatena R, Bottoni P, Pontoglio A, Giardina B. Pharmacological modulation of nitric oxide release: new pharmacological perspectives, potential benefits and risks. Curr Med Chem. 2010;17:61–73.

    Article  CAS  PubMed  Google Scholar 

  48. Maher SA, Birrell MA, Belvisi MG. Prostaglandin E2 mediates cough via the EP3 receptor: implications for future disease therapy. Am J Respir Crit Care Med. 2009;180:923–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Buckley J, Birrell MA, Maher SA, Nials AT, Clarke DL, Belvisi MG. EP4 receptor as a new target for bronchodilator therapy. Thorax. 2011;66:1029–35.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Doggrell SA. Bitter taste receptors as a target for bronchodilation. Expert Opin Ther Targets. 2011;15:899–902.

    Article  CAS  PubMed  Google Scholar 

  51. Cazzola M, Matera MG. The effective treatment of COPD: anticholinergics and what else? Drug Discov Today Ther Strateg. 2006;3:277–86.

    Article  Google Scholar 

  52. Chung KF, Caramori G, Adcock IM. Inhaled corticosteroids as combination therapy with β-adrenergic agonists in airways disease: present and future. Eur J Clin Pharmacol. 2009;65:853–71.

    Article  CAS  PubMed  Google Scholar 

  53. Cazzola M, Molimard M. The scientific rationale for combining long-acting β2-agonists and muscarinic antagonists in COPD. Pulm Pharmacol Ther. 2010;23:257–67.

    Article  CAS  PubMed  Google Scholar 

  54. Cazzola M, Calzetta L, Matera MG. β2-adrenoceptor agonists: current and future direction. Br J Pharmacol. 2011;163:4–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Spina D. Pharmacology of novel treatments for COPD:are fixed dose combination LABA/LAMA synergistic? Eur Clin Respir J; 2015.

    Google Scholar 

  56. Tashkin DP, Ferguson GT. Combination bronchodilator therapy in the management of chronic obstructive pulmonary disease. Respir Res. 2013;14:49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cazzola M, Tashkin DP. Combination of formoterol and tiotropium in the treatment of COPD: effects on lung function. COPD. 2009;6:404–15.

    Article  PubMed  Google Scholar 

  58. Adcock IM, Maneechotesuwan K, Usmani O. Molecular interactions between glucocorticoids and long-acting β2-agonists. J Allergy Clin Immunol. 2002;110:S261–8.

    Article  CAS  PubMed  Google Scholar 

  59. Cazzola M, Dahl R. Inhaled combination therapy with long-acting β2-agonists and corticosteroids in stable COPD. Chest. 2004;126:220–37.

    Article  CAS  PubMed  Google Scholar 

  60. Calverley PM, Anderson JA, Celli B, Ferguson GT, Jenkins C, Jones PW, Yates JC, Vestbo J, TORCH Investigators. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med. 2007;356:775–89.

    Article  CAS  PubMed  Google Scholar 

  61. Choi J, Na J, Kim Y. The effect of tiotropium and inhaled corticosteroid combination therapy in chronic obstructive pulmonary disease (COPD) and chronic obstructive bronchial asthma (COBA) associated with irreversible pulmonary function (Abstract). Am J Respir Crit Care Med. 2007;175:A130.

    Google Scholar 

  62. Derendorf H, Nave R, Drollmann A, Cerasoli F, Wurst W. Relevance of pharmacokinetics and pharmacodynamics of inhaled corticosteroids to asthma. Eur Respir J. 2006;28:1042–50.

    Article  CAS  PubMed  Google Scholar 

  63. Pitcairn G, Reader S, Pavia D, Newman S. Deposition of corticosteroid aerosol in the human lung by Respimat® Soft Mist™ inhaler compared to deposition by Metered Dose Inhaler or by Turbuhaler® Dry Powder Inhaler. J Aerosol Med. 2005;18:264–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashige Kuraki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kuraki, T. (2017). Bronchodilators for COPD: At What Stage Should Therapeutic Intervention Be Initiated?. In: Nakamura, H., Aoshiba, K. (eds) Chronic Obstructive Pulmonary Disease. Respiratory Disease Series: Diagnostic Tools and Disease Managements. Springer, Singapore. https://doi.org/10.1007/978-981-10-0839-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0839-9_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0838-2

  • Online ISBN: 978-981-10-0839-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics